4,078 research outputs found
Asymptotic channels and gauge transformations of the time-dependent Dirac equation for extremely relativistic heavy-ion collisions
We discuss the two-center, time-dependent Dirac equation describing the
dynamics of an electron during a peripheral, relativistic heavy-ion collision
at extreme energies. We derive a factored form, which is exact in the
high-energy limit, for the asymptotic channel solutions of the Dirac equation,
and elucidate their close connection with gauge transformations which transform
the dynamics into a representation in which the interaction between the
electron and a distant ion is of short range. We describe the implications of
this relationship for solving the time-dependent Dirac equation for extremely
relativistic collisions.Comment: 12 pages, RevTeX, 2 figures, submitted to PR
Nucleosynthesis in 2D Core-Collapse Supernovae of 11.2 and 17.0 M Progenitors: Implications for Mo and Ru Production
Core-collapse supernovae are the first polluters of heavy elements in the
galactic history. As such, it is important to study the nuclear compositions of
their ejecta, and understand their dependence on the progenitor structure
(e.g., mass, compactness, metallicity). Here, we present a detailed
nucleosynthesis study based on two long-term, two-dimensional core-collapse
supernova simulations of a 11.2 M and a 17.0 M star. We
find that in both models nuclei well beyond the iron group (up to ) can be produced, and discuss in detail also the nucleosynthesis of the
p-nuclei Mo and Ru. While we observe the production of
Mo and Mo in slightly neutron-rich conditions in both
simulations, Ru can only be produced efficiently via the
p-process. Furthermore, the production of Ru in the p-process heavily
depends on the presence of very proton-rich material in the ejecta. This
disentanglement of production mechanisms has interesting consequences when
comparing to the abundance ratios between these isotopes in the solar system
and in presolar grains.Comment: 48 pages, 19 figures, accepted for publication in: J. Phys. G: Nucl.
Part. Phy
Pushing 1D CCSNe to explosions: model and SN 1987A
We report on a method, PUSH, for triggering core-collapse supernova
explosions of massive stars in spherical symmetry. We explore basic explosion
properties and calibrate PUSH such that the observables of SN1987A are
reproduced. Our simulations are based on the general relativistic hydrodynamics
code AGILE combined with the detailed neutrino transport scheme IDSA for
electron neutrinos and ALS for the muon and tau neutrinos. To trigger
explosions in the otherwise non-exploding simulations, we rely on the
neutrino-driven mechanism. The PUSH method locally increases the energy
deposition in the gain region through energy deposition by the heavy neutrino
flavors. Our setup allows us to model the explosion for several seconds after
core bounce. We explore the progenitor range 18-21M. Our studies
reveal a distinction between high compactness (HC) and low compactness (LC)
progenitor models, where LC models tend to explore earlier, with a lower
explosion energy, and with a lower remnant mass. HC models are needed to obtain
explosion energies around 1 Bethe, as observed for SN1987A. However, all the
models with sufficiently high explosion energy overproduce Ni. We
conclude that fallback is needed to reproduce the observed nucleosynthesis
yields. The nucleosynthesis yields of Ni depend sensitively on the
electron fraction and on the location of the mass cut with respect to the
initial shell structure of the progenitor star. We identify a progenitor and a
suitable set of PUSH parameters that fit the explosion properties of SN1987A
when assuming 0.1M of fallback. We predict a neutron star with a
gravitational mass of 1.50M. We find correlations between explosion
properties and the compactness of the progenitor model in the explored
progenitors. However, a more complete analysis will require the exploration of
a larger set of progenitors with PUSH.Comment: revised version as accepted by ApJ (results unchanged, text modified
for clarification, a few references added); 26 pages, 20 figure
Complete and safe resection of challenging retroperitoneal tumors: anticipation of multi-organ and major vascular resection and use of adjunct procedures.
BackgroundRetroperitoneal tumors are often massive and can involve adjacent organs and/or vital structures, making them difficult to resect. Completeness of resection is within the surgeon's control and critical for long-term survival, particularly for malignant disease. Few studies directly address strategies for complete and safe resection of challenging retroperitoneal tumors.MethodsFifty-six patients representing 63 cases of primary or recurrent retroperitoneal tumor resection between 2004-2009 were identified and a retrospective chart review was performed. Rates of complete resection, use of adjunct procedures, and perioperative complications were recorded.ResultsIn 95% of cases, complete resection was achieved. Fifty-eight percent of these cases required en bloc multi-organ resection, and 8% required major vascular resection. Complete resection rates were higher for primary versus recurrent disease. Adjunct procedures (ureteral stents, femoral nerve monitoring, posterior laminotomy, etc.) were used in 54% of cases. Major postoperative complications occurred in 16% of cases, and one patient died (2% mortality).ConclusionsComplete resection of challenging retroperitoneal tumors is feasible and can be done safely with important pre- and intraoperative considerations in mind
Exploring Interacting Quantum Many-Body Systems by Experimentally Creating Continuous Matrix Product States in Superconducting Circuits
Improving the understanding of strongly correlated quantum many body systems
such as gases of interacting atoms or electrons is one of the most important
challenges in modern condensed matter physics, materials research and
chemistry. Enormous progress has been made in the past decades in developing
both classical and quantum approaches to calculate, simulate and experimentally
probe the properties of such systems. In this work we use a combination of
classical and quantum methods to experimentally explore the properties of an
interacting quantum gas by creating experimental realizations of continuous
matrix product states - a class of states which has proven extremely powerful
as a variational ansatz for numerical simulations. By systematically preparing
and probing these states using a circuit quantum electrodynamics (cQED) system
we experimentally determine a good approximation to the ground-state wave
function of the Lieb-Liniger Hamiltonian, which describes an interacting Bose
gas in one dimension. Since the simulated Hamiltonian is encoded in the
measurement observable rather than the controlled quantum system, this approach
has the potential to apply to exotic models involving multicomponent
interacting fields. Our findings also hint at the possibility of experimentally
exploring general properties of matrix product states and entanglement theory.
The scheme presented here is applicable to a broad range of systems exploiting
strong and tunable light-matter interactions.Comment: 11 pages, 9 figure
Computation of Mass Outflow Rate from Relativistic Quasi-Spherical Accretion onto Black Holes
We compute mass outflow rate from relativistic matter accreting
quasi-spherically onto Schwarzschild black holes. Taking the pair-plasma
pressure mediated shock surface as the {\it effective} boundary layer (of the
black hole) from where bulk of the outflow is assumed to be generated,
computation of this rate is done using combinations of exact transonic inflow
and outflow solutions. We find that depends on the initial
parameters of the flow, the polytropic index of matter, the degree of
compression of matter near the shock surface and on the location of the shock
surface itself. We thus not only study the variation of the mass outflow rate
as a function of various physical parameters governing the problem but also
provide a sufficiently plausible estimation of this rate.Comment: 6 twocoloumn pages with 5 figures. mn.sty used. Accepted for
publication in MNRA
- âŠ