417 research outputs found

    Properties of rf-sputtered indium-tin-oxynitride thin films

    Get PDF
    Indium-tin-oxide (ITO) and indium-tin-oxynitride (ITON) thin films have been fabricated by rf-sputtering in plasma containing Ar or a mixture of Ar and N-2, respectively. The structural, electrical and optical properties of ITON films were examined and compared with those of ITO films. The microstructure of ITON films was found to be dependent on the nitrogen concentration in the plasma. Increasing the amount of nitrogen in the plasma increased the resistivity and reduced the carrier concentration and mobility of the films. The electrical properties of the ITON films improved after annealing. The absorption edge of the ITON films deposited in pure N-2 plasma was shifted towards higher energies and showed reduced infrared reflectance compared to the respective properties of ITO films. The potential of indium-tin-oxynitride films for use as a transparent conductive material for optoelectronic devices is addressed

    Unilateral Cleavage Furrows in Multinucleate Cells

    No full text
    Multinucleate cells can be produced inDictyosteliumby electric pulse-induced fusion. In these cells, unilateral cleavage furrows are formed at spaces between areas that are controlled by aster microtubules. A peculiarity of unilateral cleavage furrows is their propensity to join laterally with other furrows into rings to form constrictions. This means cytokinesis is biphasic in multinucleate cells, the final abscission of daughter cells being independent of the initial direction of furrow progression. Myosin-II and the actin filament cross-linking protein cortexillin accumulate in unilateral furrows, as they do in the normal cleavage furrows of mononucleate cells. In a myosin-II-null background, multinucleate or mononucleate cells were produced by cultivation either in suspension or on an adhesive substrate. Myosin-II is not essential for cytokinesis either in mononucleate or in multinucleate cells but stabilizes and confines the position of the cleavage furrows. In fused wild-type cells, unilateral furrows ingress with an average velocity of 1.7 mu m x min(-1), with no appreciable decrease of velocity in the course of ingression. In multinucleate myosin-II-null cells, some of the furrows stop growing, thus leaving space for the extensive broadening of the few remaining furrows

    Fragility and hysteretic creep in frictional granular jamming

    Full text link
    The granular jamming transition is experimentally investigated in a two-dimensional system of frictional, bi-dispersed disks subject to quasi-static, uniaxial compression at zero granular temperature. Currently accepted results show the jamming transition occurs at a critical packing fraction ϕc\phi_c. In contrast, we observe the first compression cycle exhibits {\it fragility} - metastable configuration with simultaneous jammed and un-jammed clusters - over a small interval in packing fraction (ϕ1<ϕ<ϕ2\phi_1 < \phi < \phi_2). The fragile state separates the two conditions that define ϕc\phi_c with an exponential rise in pressure starting at ϕ1\phi_1 and an exponential fall in disk displacements ending at ϕ2\phi_2. The results are explained through a percolation mechanism of stressed contacts where cluster growth exhibits strong spatial correlation with disk displacements. Measurements with several disk materials of varying elastic moduli EE and friction coefficients μ\mu, show friction directly controls the start of the fragile state, but indirectly controls the exponential slope. Additionally, we experimentally confirm recent predictions relating the dependence of ϕc\phi_c on μ\mu. Under repetitive loading (compression), the system exhibits hysteresis in pressure, and the onset ϕc\phi_c increases slowly with repetition number. This friction induced hysteretic creep is interpreted as the granular pack's evolution from a metastable to an eventual structurally stable configuration. It is shown to depend upon the quasi-static step size Δϕ\Delta \phi which provides the only perturbative mechanism in the experimental protocol, and the friction coefficient μ\mu which acts to stabilize the pack.Comment: 12 pages, 10 figure

    Two scenarios for avalanche dynamics in inclined granular layers

    Full text link
    We report experimental measurements of avalanche behavior of thin granular layers on an inclined plane for low volume flow rate. The dynamical properties of avalanches were quantitatively and qualitatively different for smooth glass beads compared to irregular granular materials such as sand. Two scenarios for granular avalanches on an incline are identified and a theoretical explanation for these different scenarios is developed based on a depth-averaged approach that takes into account the differing rheologies of the granular materials.Comment: 4 pages, 4 figures, accepted to Phys. Rev. Let

    Partitioning spatial, environmental, and community drivers of ecosystem functioning

    Get PDF
    Context: Community composition, environmental variation, and spatial structuring can influence ecosystem functioning, and ecosystem service delivery. While the role of space in regulating ecosystem functioning is well recognised in theory, it is rarely considered explicitly in empirical studies. Objectives: We evaluated the role of spatial structuring within and between regions in explaining the functioning of 36 reference and human-impacted streams. Methods: We gathered information on regional and local environmental variables, communities (taxonomy and traits), and used variance partitioning analysis to explain seven indicators of ecosystem functioning. Results: Variation in functional indicators was explained not only by environmental variables and community composition, but also by geographic position, with sometimes high joint variation among the explanatory factors. This suggests spatial structuring in ecosystem functioning beyond that attributable to species sorting along environmental gradients. Spatial structuring at the within-region scale potentially arose from movements of species and materials among habitat patches. Spatial structuring at the between-region scale was more pervasive, occurring both in analyses of individual ecosystem processes and of the full functional matrix, and is likely to partly reflect phenotypic variation in the traits of functionally important species. Characterising communities by their traits rather than taxonomy did not increase the total variation explained, but did allow for a better discrimination of the role of space. Conclusions: These results demonstrate the value of accounting for the role of spatial structuring to increase explanatory power in studies of ecosystem processes, and underpin more robust management of the ecosystem services supported by those processes

    Responses of multiple structural and functional indicators along three contrasting disturbance gradients

    Get PDF
    Ecosystem functioning and community structure are recognized as key components of ecosystem integrity, but comprehensive, standardized studies of the responses of both structural and functional indicators to different types of anthropogenic pressures remain rare. Consequently, we lack an empirical basis for (i) identifying when monitoring ecosystem structure alone misses important changes in ecosystem functioning, (ii) recommending sets of structural and functional metrics best suited for detecting ecological change driven by different anthropogenic pressures, and (iii) understanding the cumulative effects of multiple, co-occurring stressors on structure and function. We investigated variation in community structure and ecosystem functioning of stream ecosystems along three gradients (10–16 independent stream sites each) of increasing impact arising from agriculture, forestry and river regulation for hydropower, respectively. For each stream, we quantified variation in (i) the abiotic environment, (ii) community composition of four organism groups and (iii) three basal ecosystem processes underpinning carbon and nutrient cycling in streams. We assessed the responsiveness of multiple biodiversity, community structure and ecosystem functioning indicators based on variance explained and effect size metrics. Along a gradient of increasing agricultural impact, diatoms and fish were the most responsive groups overall, but significant variation was detected in at least one aspect of community composition, abundance and/ or biodiversity of every organism group . In contrast, most of our functional metrics did not vary significantly along the agricultural gradient, possibly due to contrasting, antagonistic effects of increasing nutrient concentrations and turbidity on ecosystem process rates. The exception was detritivore-mediated litter decomposition which increased up to moderate levels of nutrient. Impacts of river regulation were most marked for diatoms, which were responsive to both increasingly frequent hydropeaking and to increasing seasonal river regulation. Among functional indicators, both litter decomposition and algal biomass accrual declined significantly with increasing hydropeaking. Few structural or functional metrics varied with forest management, with macroinvertebrate diversity increasing along the forestry gradient, as did algal and fungal biomass accrual. Together, these findings highlight the challenges of making inferences about the impacts of anthropogenic disturbances at the ecosystem level based on community data alone, and pinpoint the need to identify optimal sets of functional and structural indicators best suited for detecting ecological changes associated with different human activities

    Stretching fields and mixing near the transition to nonperiodic two-dimensional flow

    Get PDF
    Although time-periodic fluid flows sometimes produce mixing via Lagrangian chaos, the additional contribution to mixing caused by nonperiodicity has not been quantified experimentally. Here, we do so for a quasi-two-dimensional flow generated by electromagnetic forcing. Several distinct measures of mixing are found to vary continuously with the Reynolds number, with no evident change in magnitude or slope at the onset of nonperiodicity. Furthermore, the scaled probability distributions of the mean Lyapunov exponent have the same form in the periodic and nonperiodic flow states

    A model for interacting instabilities and texture dynamics of patterns

    Full text link
    A simple model to study interacting instabilities and textures of resulting patterns for thermal convection is presented. The model consisting of twelve-mode dynamical system derived for periodic square lattice describes convective patterns in the form of stripes and patchwork quilt. The interaction between stationary zig-zag stripes and standing patchwork quilt pattern leads to spatiotemporal patterns of twisted patchwork quilt. Textures of these patterns, which depend strongly on Prandtl number, are investigated numerically using the model. The model also shows an interesting possibility of a multicritical point, where stability boundaries of four different structures meet.Comment: 4 pages including 4 figures, page width revise
    • …
    corecore