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Stretching fields and mixing near the transition to nonperiodic two-
dimensional flow

Abstract
Although time-periodic fluid flows sometimes produce mixing via Lagrangian chaos, the additional
contribution to mixing caused by nonperiodicity has not been quantified experimentally. Here, we do so for a
quasi-two-dimensional flow generated by electromagnetic forcing. Several distinct measures of mixing are
found to vary continuously with the Reynolds number, with no evident change in magnitude or slope at the
onset of nonperiodicity. Furthermore, the scaled probability distributions of the mean Lyapunov exponent
have the same form in the periodic and nonperiodic flow states.
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Although time-periodic fluid flows sometimes produce mixing via Lagrangian chaos, the additional contri-
bution to mixing caused by nonperiodicity has not been quantified experimentally. Here, we do so for a
quasi-two-dimensional flow generated by electromagnetic forcing. Several distinct measures of mixing are
found to vary continuously with the Reynolds number, with no evident change in magnitude or slope at the
onset of nonperiodicity. Furthermore, the scaled probability distributions of the mean Lyapunov exponent have
the same form in the periodic and nonperiodic flow states.

DOI: 10.1103/PhysRevE.77.056315 PACS number�s�: 47.52.�j, 05.45.�a, 47.20.Ky

Fluid mixing, often aided by turbulent fluctuations, is in-
timately connected with the transport of mass or energy. Un-
derstanding and characterizing mixing are crucial to applica-
tions of scientific and technological importance, ranging
from the redistribution of heat in the atmosphere and oceans
to the efficient combustion of air-fuel mixtures. While turbu-
lent flows generally produce strong mixing, it is also well
known that time-periodic flows, even in two dimensions, can
also mix by Lagrangian chaos or chaotic advection �1–3�,
which causes nearby fluid elements to separate exponentially
in time. Although there have been many studies of mixing in
both periodic and turbulent flows, a quantitative experimen-
tal comparison of mixing properties in periodic and nonperi-
odic regimes for the same system is lacking.

One way to do this is to measure stretching fields �4,5�,
which provide the local deformation of an infinitesimal cir-
cular fluid element over a finite-time interval �t. The loga-
rithm of the stretching �after first dividing by �t� gives the
finite-time Lyapunov exponent ��� for separation of nearby
fluid elements at each point in a flow. For periodic two-
dimensional flows, stretching fields have been shown to be
closely related to the mixing of a passive scalar concentra-
tion field �6–8�. An equivalent of stretching fields was first
calculated numerically for a nonperiodic model system by
Varosi et al. �9�. Mixing in tidal currents were also analyzed
using similar dynamical systems methods �10�. Until re-
cently �11�, however, the extension of these ideas to systems
that are nonperiodic or weakly turbulent has been possible
only in numerical simulations �4�.

Previous investigations of turbulent flows have considered
passive scalar dynamics �12,13� and Lagrangian dispersion
of particle clusters �14�. Lagrangian reference frame mea-
surements such as single particle dynamics �15�, the separa-
tion of particle pairs �16,17�, and the deformation of particle
clusters �18� provide additional insight into the deformation
of fluid elements associated with turbulence. Recently,
stretching fields were obtained �11� in a rotating turbulent
three-dimensional flow, where the rotation imposes a quasi-
two-dimensional constraint. Finite-time Lyapunov exponents
were also measured experimentally for elastic turbulence in a
complex fluid �19� but the mechanisms for chaotic dynamics

in this very low Re system may be quite different from more
traditional fluid turbulence. Although these results show
promise for the general applicability of this technique to
more complex flows, experimental determination of
Lyapunov exponents as a function of the Reynolds number
Re for turbulent flows has not been reported.

In the research reported here, we investigate mixing in a
conducting stratified fluid driven by a temporally periodic
electric current in the presence of a spatially random array of
magnets. We demonstrate using stretching field analysis that
the mean finite-time Lyapunov exponent ��� is proportional
to the root-mean-square �rms� rate of strain �rms and the
exponential decay rate � of the number of particles in a small
region, as Re varies. As the flow changes from periodic to
nonperiodic with increasing Re, we find that the probability
distribution function �PDF� collapses to a universal curve
and ��� increases smoothly without any discontinuity or
change in slope at the transition.

The experimental setup, described in detail elsewhere
�20�, consists of a 3 mm conductive layer of saturated salt
water over a random magnet array with two graphite elec-
trodes at opposing ends and a mean magnet spacing of Lm
=2 cm. Between the salt water and the magnet array is a 3
mm layer of Fluorinert, which is a dielectric, immiscible
fluid with a density larger than water and a viscosity about
70% that of water. Fluorinert acts as a buffer layer and re-
duces drag on the upper conductive layer. A sinusoidal con-
trolled voltage with a frequency of 0.1 Hz �or a period T
=10 s� is applied across the graphite electrodes. The result-
ant current in the presence of the magnets produces a Lorentz
force that drives the fluid layer periodically, producing a pe-
riodic or nonperiodic �weakly turbulent� response depending
on the voltage. The root-mean-square �rms� speed, strain,
and vorticity of the fluid, urms, �rms and �rms, respectively,
are adjusted by changing the driving voltage.

The fluid is seeded with tracer particles with a diameter of
approximately 100 �m, evenly distributed over the cell area
of 15	15 cm2. The system is illuminated with flash lamps
synchronized with a high speed camera. The frame rate of
the camera varies between 10 and 60 Hz depending on urms.
The camera, with resolution 1024 by 1280 pixels, captures
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motion for about ten forcing periods in a centered region of
the flow with dimensions 10 cm	13 cm. High resolution
velocity fields are obtained using a particle tracking algo-
rithm that identifies and tracks roughly 40 000 particles per
image pair.

The experiment is performed for different drive voltages
that produce a range of Reynolds numbers Re, defined as
Re�urms

2 /
�rms, where 
�0.01 cm2 /s is the kinematic vis-
cosity of water. Values of Re range between 5 and 110. Non-
periodicity is measured by determining the velocity correla-
tion coefficient F�T�= �u�t�u�t+T�� / �u2�, where the average
is taken over space and time and T is the forcing period. The
value of F�T� is unity for the lowest Re and decreases to 0.25
for the highest Re. The transition to weakly turbulent flow
occurs around Re=35, where F�T� begins to deviate slightly
from one. Values of urms vary between 0.14 and 1.63 cm/s
and increase monotonically with driving voltage and Re. The
values of �rms and �rms are about the same for these experi-
ments, and both increase with the driving voltage. Over the
whole Re range, most of the energy in the velocity power
spectrum E�k� is contained in the range k /2��0.5 cm−1;
this corresponds to the characteristic injection scale �magnet
spacing� of about 2 cm. Below this characteristic scale, the
spectrum is almost independent of k without any appreciable
indication of an inverse energy cascade region, whereas the
spectrum decreases rapidly at higher k with E�k�	k−4.

Stretching is a fundamental measure of the mixing of fluid
elements in which deformations of virtual fluid elements ad-
vected by the velocity field are measured over a time inter-
val, or map length, �t �2,4,5�. We compute Lagrangian tra-
jectories using a virtual particle tracking algorithm that
measures future �or past� particle positions. The Lagrangian
trajectories determine a flow map  that specifies the desti-

nation vector x�� =�x� , t0 ,�t� at time t0+�t of a fluid particle
starting from x� at time t0. Deformations are measured by
determining the right Cauchy-Green strain tensor

Cij = 

k=1,2

� �k

�xi
�� �k

�xj
� , �1�

where the derivatives are evaluated using a center-difference
scheme and the trajectories are rescaled every five frames
�0.25 s� to maintain the area preserving character of the de-
formation.

The stretching for each trajectory, either forward or back-
ward in time, S�x0 ,y0�, where �x0 ,y0� denotes the initial par-
ticle position, is determined by calculating the square root of
the maximum eigenvalue of Cij at each point. We start with
particles on a regular grid with resolution 256	256 corre-
sponding to a spacing of 0.05 cm. In Fig. 1�a�, we show
stretching fields for a periodic flow with Re=7.5, with the
red �long-dashed line� �or blue �short-dashed line�� indicating
the intensity of stretching for mappings going forward �or
backward� in time. The mapping interval is taken to be one
forcing period, �t=10 s. The sharp structures, already noted
in previous work �6�, indicate regions of strong stretching
over �t. For comparison, we show in Fig. 1�b� the stretching
field for weakly turbulent �nonperiodic� flow with Re=108.

Because urms is much larger in the latter case, we choose
�t=1 s so that the net displacements are roughly equal, in
order to compare the two fields.

The stretching fields in Figs. 1�a� and 1�b� are qualita-
tively similar: both exhibit a moderate density of sharp lines
associated with large stretching. On the other hand, the
stretching field of the weakly turbulent case does not repeat.
For example, one forcing period later the stretching field of
the periodic flow shown in Fig. 1�a� is the same �not shown�.
For the nonperiodic flow shown in Fig. 1�b�, however, the
stretching field is very different one period later, as shown in
Fig. 1�c�.

For periodic flow, dye concentration contours are ob-
served to align with the reverse stretching fields lines �6,7�;
i.e., dye and other passive scalars introduced into the flow do
not cross the lines of large past stretching �6�. It has been
proposed that stretching field ridges in weakly turbulent flow
may play a similar role �11�. We test this hypothesis by ob-
serving the mixing of virtual dye in the turbulent case and
observing the alignment of the dye with the reverse stretch-
ing field. As can be seen in Fig. 1�d�, the impurity does not
cross lines of large past stretching, which serve as barriers to
transport as in the periodic case.

Stretching fields provide a quantitative measure of mixing
via evaluation of the mean stretching or the average finite-
time Lyapunov exponent ���. From experimental stretching
fields such as those shown in Figs. 1�a�–1�c�, we compute
the stretching S for each point on the grid and average ln S
over the full field. As in any calculation of Lyapunov expo-
nents �21�, small displacements are necessary to measure ex-
ponential growth accurately. Thus, we rescale the particle
separations in the cluster �a central point and four nearest-
neighbor points� every fifth frame �about 0.1 s� to keep them
sufficiently small. A mean Lyapunov exponent ��� of each
field is obtained as the slope of �ln S� versus �t as illustrated
in Fig. 2�a� for a periodic state with Re=7.8 and for turbulent

FIG. 1. �Color online� Stretching fields �see the text� at a con-
stant phase of the forcing �negative going zero crossing� with red
and blue indicating forward and backward in time fields, respec-
tively: �a� periodic flow �Re=7.8�, with a map interval �t=10 s;
�b� weakly turbulent or nonperiodic flow �Re=108�, with �t=1 s;
�c� same as in �b� but one forcing period later �10 s�; �d� reverse
stretching field for the case shown in �b� with virtual dye placed in
the flow and advected by the velocity fields to demonstrate that
passive impurities do not cross lines of large past stretching.
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states with Re=64 and Re=108, respectively. The straight
line demonstrates the exponential growth behavior expected
in the measurement of �����ln S� /�t.

To augment our characterization of mixing, we consider
another measure of the mixing properties of the flow: the rate
at which particles leave a fixed area �22,23�. This rate is
closely related to Taylor dispersion of individual particles
�24�. We measure the dispersion of a uniform seeding of
particles in an area L=6 cm on a side �averaged over an
ensemble of areas chosen from the entire digitized image�,
and find that the areal density of particles n��t� decreases in
time with an exponential dependence and a characteristic rate
�, as shown in Fig. 2�b�. In our implementation of this
method, once a particle leaves the box, it is discarded.

In addition to average quantities, we also consider the
normalized PDFs of ln S / �ln S�, averaged over all the frames
in each data set, as shown in Fig. 3 �unnormalized PDFs of
��� are shown in the inset�. Included are several data sets
corresponding to a range of Re values spanning the interval
that includes both periodic and weakly turbulent �nonperi-
odic� flow states. The excellent collapse to a non-Gaussian
PDF demonstrates that there is no significant change in sta-
tistics as Re increases from the periodic to the nonperiodic or
weakly turbulent range.

In Fig. 4�a�, we show that the mean Lyapunov exponent
���, the rate of strain, normalized �arbitrarily� by a factor of
three, �=�rms /3, for comparison with ���, and the areal par-

ticle density decay rate � are proportional to each other and
increase smoothly as a function of Re. These measures
broadly characterize the stretching, transport, and ultimately
the mixing properties of the system across the transition from
periodic to nonperiodic flow occurring near Re=35. It is in-
teresting that these quantities vary smoothly through the
transition to nonperiodic flow. The monotonically increasing
trend for these various quantities is similar to the behavior of
dye mixing rates determined previously �7�. In that work, the
experimental dye mixing rates were about an order of mag-
nitude less than what one would calculate for the rate pre-
dicted from the Lyapunov distribution �25�. For our measure-

0

2

4

6

8

<ln
S>

a)

0 2 4 6 8 10
Δt (s)

-1.6

-1.2

-0.8

-0.4

0

<ln
n>

b)

FIG. 2. �a� Logarithm of stretching �ln S� vs time increment �t
for periodic �Re=7.8, �� and turbulent �Re=64, � and Re=108,
�� flows; the growth is exponential with dashed line fits to the
curves yielding the Lyapunov exponent. �b� Areal particle density
n��t� vs �t showing dispersion of particles seeded uniformly over a
box of size L=6 cm for different Re: 7.8 ���, 32 ���, and 108
���. The decay, averaged over space and over several phases of the
forcing, is exponential and yields a normalized decay constant �
indicated by the dashed line fits to each curve.
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FIG. 3. �Color online� Probability distribution of the normalized
stretching ln S / �ln S� for Re: 7.5 �black continuous line�, 32 �red
long dashed line�, and 108 �blue short dashed line�. The inset shows
the PDFs of ���=ln S /�t for the same Re as in �a�. The statistics are
not significantly affected by the transition to nonperiodic flow.
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FIG. 4. The average Lyapunov exponent ��� ���, the normal-
ized �for comparison� rate of strain �=�rms /3 ���, and the areal
particle density decay rate � ���, as functions of Re. The dashed
line is a linear plus quadratic fit to the Lyapunov data. The uncer-
tainties in the measured quantities are estimated to be about 10%.
The transition from periodic to weakly turbulent flow occurs around
Re=35, where the velocity fields separated by a forcing period be-
gin to differ. All of these measures of mixing vary smoothly across
the transition from periodic to weakly turbulent flow.
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ments, we find that �����rms /3 and that ����� /6. This
latter relationship suggests a similar decrease in mixing here
owing to the time required to transport fluid across the cell
�7�, although a quantitative correspondence is difficult to es-
tablish.

Our measurements of stretching fields demonstrate quan-
titatively that, within the resolution of our data, several re-
lated measures of mixing are proportional and vary continu-
ously through the transition between periodic and weakly
turbulent flows. We also find that the scaled PDF of the
Lyapunov exponent has the same shape above and below the
transition. The methods used here to study 2D flow may also

be useful in geophysical situations where rotation, stratifica-
tion, or other sources of strong anisotropy single out a par-
ticular direction. Application of these methods to fully three-
dimensional �3D� flows will require improved space and
time resolution, which is not yet obtainable experimentally.

We acknowledge useful discussions with D. Durian, G.
Eyink, and C. Connaughton. Work performed at Los Alamos
National Laboratory was funded by the U.S. Department of
Energy under Contract No. DE-AC52-06NA25396. The
work of J.P.G. and P.E.A. was supported by the NSF under
Grant No. DMR-0405187.
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