68 research outputs found
Optical frequency synthesizer with an integrated erbium tunable laser.
Optical frequency synthesizers have widespread applications in optical spectroscopy, frequency metrology, and many other fields. However, their applicability is currently limited by size, cost, and power consumption. Silicon photonics technology, which is compatible with complementary-metal-oxide-semiconductor fabrication processes, provides a low-cost, compact size, lightweight, and low-power-consumption solution. In this work, we demonstrate an optical frequency synthesizer using a fully integrated silicon-based tunable laser. The synthesizer can be self-calibrated by tuning the repetition rate of the internal mode-locked laser. A 20 nm tuning range from 1544 to 1564 nm is achieved with ~10-13 frequency instability at 10 s averaging time. Its flexibility and fast reconfigurability are also demonstrated by fine tuning the synthesizer and generating arbitrary specified patterns over time-frequency coordinates. This work promotes the frequency stability of silicon-based integrated tunable lasers and paves the way toward chip-scale low-cost optical frequency synthesizers
Spectral Line-by-Line Pulse Shaping of an On-Chip Microresonator Frequency Comb
We report, for the first time to the best of our knowledge, spectral phase
characterization and line-by-line pulse shaping of an optical frequency comb
generated by nonlinear wave mixing in a microring resonator. Through
programmable pulse shaping the comb is compressed into a train of
near-transform-limited pulses of \approx 300 fs duration (intensity full width
half maximum) at 595 GHz repetition rate. An additional, simple example of
optical arbitrary waveform generation is presented. The ability to characterize
and then stably compress the frequency comb provides new data on the stability
of the spectral phase and suggests that random relative frequency shifts due to
uncorrelated variations of frequency dependent phase are at or below the 100
microHertz level.Comment: 18 pages, 4 figure
Mode-locking via dissipative Faraday instability
Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin-Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system - spectrally dependent losses - achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin-Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering
Coherent master equation for laser modelocking
Modelocked lasers constitute the fundamental source of optically-coherent ultrashort-pulsed radiation, with huge impact in science and technology. Their modeling largely rests on the master equation (ME) approach introduced in 1975 by Hermann A. Haus. However, that description fails when the medium dynamics is fast and, ultimately, when light-matter quantum coherence is relevant. Here we set a rigorous and general ME framework, the coherent ME (CME), that overcomes both limitations. The CME predicts strong deviations from Haus ME, which we substantiate through an amplitude-modulated semiconductor laser experiment. Accounting for coherent effects, like the Risken-Nummedal-Graham-Haken multimode instability, we envisage the usefulness of the CME for describing self-modelocking and spontaneous frequency comb formation in quantum-cascade and quantum-dot lasers. Furthermore, the CME paves the way for exploiting the rich phenomenology of coherent effects in laser design, which has been hampered so far by the lack of a coherent ME formalism
Frequency Domain Spectroscopy in Rare-Earth-Doped Gain Media
Many spectroscopic techniques today rely on time-resolved measurements under short excitation pulses. Instead of using a chopped pump excitation, or ultrafast optical pulses, we expand on and apply the previously developed set of frequency domain methods to analyze the population level dynamics in rare-earth-doped media. By identifying the full frequency response of the gain medium, this method can accurately yield excited state lifetimes and can also be used to estimate transition cross-sections. The accuracy of the frequency domain methods are verified with Er3+-and Tm3+-doped fibers, and an Al2O3:Tm3+ waveguide, recovering similar results as reported by time-resolved techniques. The complete frequency domain model presented here can be used in characterization of novel optical gain media, and can provide insights into population dynamics in solid state amplifiers and lasers
Integrated CMOS-compatible Q-switched mode-locked lasers at 1900nm with an on-chip artificial saturable absorber.
We present a CMOS-compatible, Q-switched mode-locked integrated laser operating at 1.9 µm with a compact footprint of 23.6 × 0.6 × 0.78mm. The Q-switching rate is 720 kHz, the mode-locking rate is 1.2 GHz, and the optical bandwidth is 17nm, which is sufficient to support pulses as short as 215 fs. The laser is fabricated using a silicon nitride on silicon dioxide 300-mm wafer platform, with thulium-doped Al2O3 glass as a gain material deposited over the silicon photonics chip. An integrated Kerr-nonlinearity-based artificial saturable absorber is implemented in silicon nitride. A broadband (over 100 nm) dispersion-compensating grating in silicon nitride provides sufficient anomalous dispersion to compensate for the normal dispersion of the other laser components, enabling femtosecond-level pulses. The laser has no off-chip components with the exception of the optical pump, allowing for easy co-integration of numerous other photonic devices such as supercontinuum generation and frequency doublers which together potentially enable fully on-chip frequency comb generation
- …