135 research outputs found

    Defoliation of Tilia cordata trees associated with Apiognomonia errabunda infection in Finland

    Get PDF
    We investigated the causative agent of a disease outbreak affecting small-leaved limes (Tilia cordata Mill.) and resulting in darkening of the leaf petioles and excessive defoliation during summer 2016 in southern Finland. The fungal species composition of the symptomatic petioles was examined by culture isolation and molecular identification using ITS rDNA sequences, which revealed the most prevalent fungal species present in the petioles as Apiognomonia errabunda (Roberge) Hhn. Based on reviewing curated herbarium specimens deposited at the Universities of Helsinki and Turku, A. errabunda is native and widely distributed in small-leaved limes in Finland, and occasionally infects also other broadleaved trees, including Quercus robur L. and ornamental species of Tilia L. and Fagus L. The ITS sequence analysis conducted during this study revealed minor within-species polymorphisms similar to those observed earlier in the Central European and Russian populations of A. errabunda, and reports the first nucleotide sequences of this species from the Nordic countries

    Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard

    Get PDF
    The diversity of highly active bacterial communities in cryoconite holes on three Arctic glaciers in Svalbard was investigated using terminal restriction fragment length polymorphism (T-RFLP) of the 16S rRNA locus. Construction and sequencing of clone libraries allowed several members of these communities to be identified, with Proteobacteria being the dominant one, followed by Cyanobacteria and Bacteroidetes. T-RFLP data revealed significantly different communities in holes on the (cold) valley glacier Austre Brøggerbreen relative to two adjacent (polythermal) valley glaciers, Midtre Lovénbreen and Vestre Brøggerbreen. These population compositions correlate with differences in organic matter content, temperature and the metabolic activity of microbial communities concerned. No within-glacier spatial patterns were observed in the communities identified over the 2-year period and with the 1 km-spaced sampling. We infer that surface hydrology is an important factor in the development of cryoconite bacterial communities

    Syndecan-1 Enhances Proliferation, Migration and Metastasis of HT-1080 Cells in Cooperation with Syndecan-2

    Get PDF
    Syndecans are transmembrane heparan sulphate proteoglycans. Their role in the development of the malignant phenotype is ambiguous and depends upon the particular type of cancer. Nevertheless, syndecans are promising targets in cancer therapy, and it is important to elucidate the mechanisms controlling their various cellular effects. According to earlier studies, both syndecan-1 and syndecan-2 promote malignancy of HT-1080 human fibrosarcoma cells, by increasing the proliferation rate and the metastatic potential and migratory ability, respectively. To better understand their tumour promoter role in this cell line, syndecan expression levels were modulated in HT-1080 cells and the growth rate, chemotaxis and invasion capacity were studied. For in vivo testing, syndecan-1 overexpressing cells were also inoculated into mice. Overexpression of full length or truncated syndecan-1 lacking the entire ectodomain but containing the four juxtamembrane amino acids promoted proliferation and chemotaxis. These effects were accompanied by a marked increase in syndecan-2 protein expression. The pro-migratory and pro-proliferative effects of truncated syndecan-1 were not observable when syndecan-2 was silenced. Antisense silencing of syndecan-2, but not that of syndecan-1, inhibited cell migration. In vivo, both full length and truncated syndecan-1 increased tumour growth and metastatic rate. Based on our in vitro results, we conclude that the tumour promoter role of syndecan-1 observed in HT-1080 cells is independent of its ectodomain; however, in vivo the presence of the ectodomain further increases tumour proliferation. The enhanced migratory ability induced by syndecan-1 overexpression is mediated by syndecan-2. Overexpression of syndecan-1 also leads to activation of IGF1R and increased expression of Ets-1. These changes were not evident when syndecan-2 was overexpressed. These findings suggest the involvement of IGF1R and Ets-1 in the induction of syndecan-2 synthesis and stimulation of proliferation by syndecan-1. This is the first report demonstrating that syndecan-1 enhances malignancy of a mesenchymal tumour cell line, via induction of syndecan-2 expression

    Quantum cascade laser frequency stabilisation at the sub-Hz level

    Full text link
    Quantum Cascade Lasers (QCL) are increasingly being used to probe the mid-infrared "molecular fingerprint" region. This prompted efforts towards improving their spectral performance, in order to reach ever-higher resolution and precision. Here, we report the stabilisation of a QCL onto an optical frequency comb. We demonstrate a relative stability and accuracy of 2x10-15 and 10-14, respectively. The comb is stabilised to a remote near-infrared ultra-stable laser referenced to frequency primary standards, whose signal is transferred via an optical fibre link. The stability and frequency traceability of our QCL exceed those demonstrated so far by two orders of magnitude. As a demonstration of its capability, we then use it to perform high-resolution molecular spectroscopy. We measure absorption frequencies with an 8x10-13 relative uncertainty. This confirms the potential of this setup for ultra-high precision measurements with molecules, such as our ongoing effort towards testing the parity symmetry by probing chiral species

    Design of the sex hormones and physical exercise (SHAPE) study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Physical activity has been associated with a decreased risk for breast cancer. The biological mechanismn(s) underlying the association between physical activity and breast cancer is not clear. Most prominent hypothesis is that physical activity may protect against breast cancer through reduced lifetime exposure to endogenous hormones either direct, or indirect by preventing overweight and abdominal adiposity. In order to get more insight in the causal pathway between physical activity and breast cancer risk, we designed the <it>Sex Hormones and Physical Exercise (SHAPE) </it>study. Purpose of SHAPE study is to examine the effects of a 1-year moderate-to-vigorous intensity exercise programme on endogenous hormone levels associated with breast cancer among sedentary postmenopausal women and whether the amount of total body fat or abdominal fat mediates the effects.</p> <p>Methods/Design</p> <p>In the SHAPE study, 189 sedentary postmenopausal women, aged 50–69 years, are randomly allocated to an intervention or a control group. The intervention consists of an 1-year moderate-to-vigorous intensity aerobic and strenght training exercise programme. Partcipants allocated to the control group are requested to retain their habitual exercise pattern. Primary study parameters measured at baseline, at four months and at 12 months are: serum concentrations of endogenous estrogens, endogenous androgens, sex hormone binding globuline and insuline. Other study parameters include: amount of total and abdominal fat, weight, BMI, body fat distribution, physical fitness, blood pressure and lifestyle factors.</p> <p>Discussion</p> <p>This study will contribute to the body of evidence relating physical activity and breast cancer risk and will provide insight into possible mechanisms through which physical activity might be associated with reduced risk of breast cancer in postmenopausal women.</p> <p>Trial registration</p> <p>NCT00359060</p

    Gene Expression Profiling of Preovulatory Follicle in the Buffalo Cow: Effects of Increased IGF-I Concentration on Periovulatory Events

    Get PDF
    The preovulatory follicle in response to gonadotropin surge undergoes dramatic biochemical, and morphological changes orchestrated by expression changes in hundreds of genes. Employing well characterized bovine preovulatory follicle model, granulosa cells (GCs) and follicle wall were collected from the preovulatory follicle before, 1, 10 and 22 h post peak LH surge. Microarray analysis performed on GCs revealed that 450 and 111 genes were differentially expressed at 1 and 22 h post peak LH surge, respectively. For validation, qPCR and immunocytochemistry analyses were carried out for some of the differentially expressed genes. Expression analysis of many of these genes showed distinct expression patterns in GCs and the follicle wall. To study molecular functions and genetic networks, microarray data was analyzed using Ingenuity Pathway Analysis which revealed majority of the differentially expressed genes to cluster within processes like steroidogenesis, cell survival and cell differentiation. In the ovarian follicle, IGF-I is established to be an important regulator of the above mentioned molecular functions. Thus, further experiments were conducted to verify the effects of increased intrafollicular IGF-I levels on the expression of genes associated with the above mentioned processes. For this purpose, buffalo cows were administered with exogenous bGH to transiently increase circulating and intrafollicular concentrations of IGF-I. The results indicated that increased intrafollicular concentrations of IGF-I caused changes in expression of genes associated with steroidogenesis (StAR, SRF) and apoptosis (BCL-2, FKHR, PAWR). These results taken together suggest that onset of gonadotropin surge triggers activation of various biological pathways and that the effects of growth factors and peptides on gonadotropin actions could be examined during preovulatory follicle development

    An early history of T cell-mediated cytotoxicity.

    Get PDF
    After 60 years of intense fundamental research into T cell-mediated cytotoxicity, we have gained a detailed knowledge of the cells involved, specific recognition mechanisms and post-recognition perforin-granzyme-based and FAS-based molecular mechanisms. What could not be anticipated at the outset was how discovery of the mechanisms regulating the activation and function of cytotoxic T cells would lead to new developments in cancer immunotherapy. Given the profound recent interest in therapeutic manipulation of cytotoxic T cell responses, it is an opportune time to look back on the early history of the field. This Timeline describes how the early findings occurred and eventually led to current therapeutic applications

    Fungal community composition and metabolism under elevated CO 2 and O 3

    Full text link
    Atmospheric CO 2 and O 3 concentrations are increasing due to human activity and both trace gases have the potential to alter C cycling in forest ecosystems. Because soil microorganisms depend on plant litter as a source of energy for metabolism, changes in the amount or the biochemistry of plant litter produced under elevated CO 2 and O 3 could alter microbial community function and composition. Previously, we have observed that elevated CO 2 increased the microbial metabolism of cellulose and chitin, whereas elevated O 3 dampened this response. We hypothesized that this change in metabolism under CO 2 and O 3 enrichment would be accompanied by a concomitant change in fungal community composition. We tested our hypothesis at the free-air CO 2 and O 3 enrichment (FACE) experiment at Rhinelander, Wisconsin, in which Populus tremuloides , Betula papyrifera , and Acer saccharum were grown under factorial CO 2 and O 3 treatments. We employed extracellular enzyme analysis to assay microbial metabolism, phospholipid fatty acid (PLFA) analysis to determine changes in microbial community composition, and polymerase chain reaction–denaturing gradient gel electrophoresis (PCR–DGGE) to analyze the fungal community composition. The activities of 1,4-β-glucosidase (+37%) and 1,4,-β- N -acetylglucosaminidase (+84%) were significantly increased under elevated CO 2 , whereas 1,4-β-glucosidase activity (−25%) was significantly suppressed by elevated O 3 . There was no significant main effect of elevated CO 2 or O 3 on fungal relative abundance, as measured by PLFA. We identified 39 fungal taxonomic units from soil using DGGE, and found that O 3 enrichment significantly altered fungal community composition. We conclude that fungal metabolism is altered under elevated CO 2 and O 3 , and that there was a concomitant change in fungal community composition under elevated O 3 . Thus, changes in plant inputs to soil under elevated CO 2 and O 3 can propagate through the microbial food web to alter the cycling of C in soil.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47711/1/442_2005_Article_249.pd

    Short-term variability of the Sun-Earth system: an overview of progress made during the CAWSES-II period

    Get PDF
    corecore