259 research outputs found

    BICEPP: an example-based statistical text mining method for predicting the binary characteristics of drugs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The identification of drug characteristics is a clinically important task, but it requires much expert knowledge and consumes substantial resources. We have developed a statistical text-mining approach (BInary Characteristics Extractor and biomedical Properties Predictor: BICEPP) to help experts screen drugs that may have important clinical characteristics of interest.</p> <p>Results</p> <p>BICEPP first retrieves MEDLINE abstracts containing drug names, then selects tokens that best predict the list of drugs which represents the characteristic of interest. Machine learning is then used to classify drugs using a document frequency-based measure. Evaluation experiments were performed to validate BICEPP's performance on 484 characteristics of 857 drugs, identified from the Australian Medicines Handbook (AMH) and the PharmacoKinetic Interaction Screening (PKIS) database. Stratified cross-validations revealed that BICEPP was able to classify drugs into all 20 major therapeutic classes (100%) and 157 (of 197) minor drug classes (80%) with areas under the receiver operating characteristic curve (AUC) > 0.80. Similarly, AUC > 0.80 could be obtained in the classification of 173 (of 238) adverse events (73%), up to 12 (of 15) groups of clinically significant cytochrome P450 enzyme (CYP) inducers or inhibitors (80%), and up to 11 (of 14) groups of narrow therapeutic index drugs (79%). Interestingly, it was observed that the keywords used to describe a drug characteristic were not necessarily the most predictive ones for the classification task.</p> <p>Conclusions</p> <p>BICEPP has sufficient classification power to automatically distinguish a wide range of clinical properties of drugs. This may be used in pharmacovigilance applications to assist with rapid screening of large drug databases to identify important characteristics for further evaluation.</p

    Improved Outcome Prediction Using CT Angiography in Addition to Standard Ischemic Stroke Assessment: Results from the STOPStroke Study

    Get PDF
    Purpose: To improve ischemic stroke outcome prediction using imaging information from a prospective cohort who received admission CT angiography (CTA). Methods: In a prospectively designed study, 649 stroke patients diagnosed with acute ischemic stroke had admission NIH stroke scale scores, noncontrast CT (NCCT), CTA, and 6-month outcome assessed using the modified Rankin scale (mRS) scores. Poor outcome was defined as mRS.2. Strokes were classified as ‘‘major’ ’ by the (1) Alberta Stroke Program Early CT Score (ASPECTS+) if NCCT ASPECTS was#7; (2) Boston Acute Stroke Imaging Scale (BASIS+) if they were ASPECTS+ or CTA showed occlusion of the distal internal carotid, proximal middle cerebral, or basilar arteries; and (3) NIHSS for scores.10. Results: Of 649 patients, 253 (39.0%) had poor outcomes. NIHSS, BASIS, and age, but not ASPECTS, were independent predictors of outcome. BASIS and NIHSS had similar sensitivities, both superior to ASPECTS (p,0.0001). Combining NIHSS with BASIS was highly predictive: 77.6 % (114/147) classified as NIHSS.10/BASIS+ had poor outcomes, versus 21.5 % (77/358) with NIHSS#10/BASIS2 (p,0.0001), regardless of treatment. The odds ratios for poor outcome is 12.6 (95 % CI: 7.9 to 20.0

    Sensing coral reef connectivity pathways from space

    Get PDF
    Coral reefs rely on inter-habitat connectivity to maintain gene flow, biodiversity and ecosystem resilience. Coral reef communities of the Red Sea exhibit remarkable genetic homogeneity across most of the Arabian Peninsula coastline, with a genetic break towards the southern part of the basin. While previous studies have attributed these patterns to environmental heterogeneity, we hypothesize that they may also emerge as a result of dynamic circulation flow; yet, such linkages remain undemonstrated. Here, we integrate satellite-derived biophysical observations, particle dispersion model simulations, genetic population data and ship-borne in situ profiles to assess reef connectivity in the Red Sea. We simulated long-term (>20 yrs.) connectivity patterns driven by remotely-sensed sea surface height and evaluated results against estimates of genetic distance among populations of anemonefish, Amphiprion bicinctus, along the eastern Red Sea coastline. Predicted connectivity was remarkably consistent with genetic population data, demonstrating that circulation features (eddies, surface currents) formulate physical pathways for gene flow. The southern basin has lower physical connectivity than elsewhere, agreeing with known genetic structure of coral reef organisms. The central Red Sea provides key source regions, meriting conservation priority. Our analysis demonstrates a cost-effective tool to estimate biophysical connectivity remotely, supporting coastal management in data-limited regions

    Krüppel-like Factor 4 Regulates Intestinal Epithelial Cell Morphology and Polarity

    Get PDF
    Krüppel-like factor 4 (KLF4) is a zinc finger transcription factor that plays a vital role in regulating cell lineage differentiation during development and maintaining epithelial homeostasis in the intestine. In normal intestine, KLF4 is predominantly expressed in the differentiated epithelial cells. It has been identified as a tumor suppressor in colorectal cancer. KLF4 knockout mice demonstrated a decrease in number of goblet cells in the colon, and conditional ablation of KLF4 from the intestinal epithelium led to altered epithelial homeostasis. However, the role of KLF4 in differentiated intestinal cells and colon cancer cells, as well as the mechanism by which it regulates homeostasis and represses tumorigenesis in the intestine is not well understood. In our study, KLF4 was partially depleted in the differentiated intestinal epithelial cells by a tamoxifen-inducible Cre recombinase. We found a significant increase in the number of goblet cells in the KLF4-deleted small intestine, suggesting that KLF4 is not only required for goblet cell differentiation, but also required for maintaining goblet cell numbers through its function in inhibiting cell proliferation. The number and position of Paneth cells also changed. This is consistent with the KLF4 knockout study using villin-Cre [1]. Through immunohistochemistry (IHC) staining and statistical analysis, we found that a stem cell and/or tuft cell marker, DCAMKL1, and a proliferation marker, Ki67, are affected by KLF4 depletion, while an enteroendocrine cell marker, neurotensin (NT), was not affected. In addition, we found KLF4 depletion altered the morphology and polarity of the intestinal epithelial cells. Using a three-dimensional (3D) intestinal epithelial cyst formation assay, we found that KLF4 is essential for cell polarity and crypt-cyst formation in human colon cancer cells. These findings suggest that, as a tumor suppressor in colorectal cancer, KLF4 affects intestinal epithelial cell morphology by regulating proliferation, differentiation and polarity of the cells

    Compositional analysis of bacterial communities in seawater, sediment, and sponges in the Misool coral reef system, Indonesia

    Get PDF
    Sponge species have been deemed high microbial abundance (HMA) or low microbial abundance (LMA) based on the composition and abundance of their microbial symbionts. In the present study, we evaluated the richness and composition of bacterial communities associated with one HMA sponge (Xestospongia testudinaria; Demospongiae: Haplosclerida: Petrosiidae), one LMA sponge (Stylissa carteri; Demospongiae: Scopalinida - Scopalinidae), and one sponge with a hitherto unknown microbial community (Aaptos suberitoides; Demospongiae: Suberitida: Suberitidae) inhabiting the Misool coral reef system in the West Papua province of Indonesia. The bacterial communities of these sponge species were also compared with seawater and sediment bacterial communities from the same coastal coral reef habitat. Using a 16S rRNA gene barcoded pyrosequencing approach, we showed that the most abundant phylum overall was Proteobacteria. The biotope (sponge species, sediment or seawater) explained almost 84% of the variation in bacterial composition with highly significant differences in composition among biotopes and a clear separation between bacterial communities from seawater and S. carteri; X. testudinaria and A. suberitoides and sediment. The Chloroflexi classes SAR202 and Anaerolineae were most abundant in A. suberitoides and X. testudinaria and both of these species shared several OTUs that were largely absent in the remaining biotopes. This suggests that A. suberitoides is a HMA sponge. Although similar, the bacterial communities of S. carteri and seawater were compositionally distinct. These results confirm compositional differences between sponge and non-sponge biotopes and between HMA and LMA sponges.publishe

    Considering Trauma Exposure in the Context of Genetics Studies of Posttraumatic Stress Disorder: A Systematic Review

    Get PDF
    Background: Posttraumatic stress disorder (PTSD) is a debilitating anxiety disorder. Surveys of the general population suggest that while 50-85% of Americans will experience a traumatic event in their lifetime, only 2-50% will develop PTSD. Why some individuals develop PTSD following trauma exposure while others remain resilient is a central question in the field of trauma research. For more than half a century, the role of genetic influences on PTSD has been considered as a potential vulnerability factor. However, despite the exponential growth of molecular genetic studies over the past decade, limited progress has been made in identifying true genetic variants for PTSD. Methods: In an attempt to aid future genome wide association studies (GWAS), this paper presents a systematic review of 28 genetic association studies of PTSD. Inclusion criteria required that 1) all participants were exposed to Criterion A traumatic events, 2) polymorphisms of relevant genes were genotyped and assessed in relation to participants’ PTSD status, 3) quantitative methods were used, and 4) articles were published in English and in peer-reviewed journals. In the examination of these 28 studies, particular attention was given to variables related to trauma exposure (e.g. number of traumas, type of trauma). Results: Results indicated that most articles did not report on the GxE interaction in the context of PTSD or present data on the main effects of E despite having data available. Furthermore, some studies that did consider the GxE interaction had significant findings, underscoring the importance of examining how genotypes can modify the effect of trauma on PTSD. Additionally, results indicated that only a small number of genes continue to be studied and that there were marked differences in methodologies across studies, which subsequently limited robust conclusions. Conclusions: As trauma exposure is a necessary condition for the PTSD diagnosis, this paper identifies gaps in the current literature as well as provides recommendations for how future GWAS studies can most effectively incorporate trauma exposure data in both the design and analysis phases of studies

    The sponge microbiome within the greater coral reef microbial metacommunity

    Get PDF
    Much recent marine microbial research has focused on sponges, but very little is known about how the sponge microbiome fits in the greater coral reef microbial metacommunity. Here, we present an extensive survey of the prokaryote communities of a wide range of biotopes from Indo-Pacific coral reef environments. We find a large variation in operational taxonomic unit (OTU) richness, with algae, chitons, stony corals and sea cucumbers housing the most diverse prokaryote communities. These biotopes share a higher percentage and number of OTUs with sediment and are particularly enriched in members of the phylum Planctomycetes. Despite having lower OTU richness, sponges share the greatest percentage (>90%) of OTUs with >100 sequences with the environment (sediment and/or seawater) although there is considerable variation among sponge species. Our results, furthermore, highlight that prokaryote microorganisms are shared among multiple coral reef biotopes, and that, although compositionally distinct, the sponge prokaryote community does not appear to be as sponge-specific as previously thought.publishe

    Metallothionein (MT) -I and MT-II Expression Are Induced and Cause Zinc Sequestration in the Liver after Brain Injury

    Get PDF
    Experiments with transgenic over-expressing, and null mutant mice have determined that metallothionein-I and -II (MT-I/II) are protective after brain injury. MT-I/II is primarily a zinc-binding protein and it is not known how it provides neuroprotection to the injured brain or where MT-I/II acts to have its effects. MT-I/II is often expressed in the liver under stressful conditions but to date, measurement of MT-I/II expression after brain injury has focused primarily on the injured brain itself. In the present study we measured MT-I/II expression in the liver of mice after cryolesion brain injury by quantitative reverse-transcriptase PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) with the UC1MT antibody. Displacement curves constructed using MT-I/II knockout (MT-I/II−/−) mouse tissues were used to validate the ELISA. Hepatic MT-I and MT-II mRNA levels were significantly increased within 24 hours of brain injury but hepatic MT-I/II protein levels were not significantly increased until 3 days post injury (DPI) and were maximal at the end of the experimental period, 7 DPI. Hepatic zinc content was measured by atomic absorption spectroscopy and was found to decrease at 1 and 3 DPI but returned to normal by 7DPI. Zinc in the livers of MT-I/II−/− mice did not show a return to normal at 7 DPI which suggests that after brain injury, MT-I/II is responsible for sequestering elevated levels of zinc to the liver. Conclusion: MT-I/II is up-regulated in the liver after brain injury and modulates the amount of zinc that is sequestered to the liver

    Integrative Analysis of Epigenetic Modulation in Melanoma Cell Response to Decitabine: Clinical Implications

    Get PDF
    Decitabine, an epigenetic modifier that reactivates genes otherwise suppressed by DNA promoter methylation, is effective for some, but not all cancer patients, especially those with solid tumors. It is commonly recognized that to overcome resistance and improve outcome, treatment should be guided by tumor biology, which includes genotype, epigenotype, and gene expression profile. We therefore took an integrative approach to better understand melanoma cell response to clinically relevant dose of decitabine and identify complementary targets for combined therapy. We employed eight different melanoma cell strains, determined their growth, apoptotic and DNA damage responses to increasing doses of decitabine, and chose a low, clinically relevant drug dose to perform whole-genome differential gene expression, bioinformatic analysis, and protein validation studies. The data ruled out the DNA damage response, demonstrated the involvement of p21Cip1 in a p53-independent manner, identified the TGFβ pathway genes CLU and TGFBI as markers of sensitivity to decitabine and revealed an effect on histone modification as part of decitabine-induced gene expression. Mutation analysis and knockdown by siRNA implicated activated β-catenin/MITF, but not BRAF, NRAS or PTEN mutations as a source for resistance. The importance of protein stability predicted from the results was validated by the synergistic effect of Bortezomib, a proteasome inhibitor, in enhancing the growth arrest of decitabine in otherwise resistant melanoma cells. Our integrative analysis show that improved therapy can be achieved by comprehensive analysis of cancer cells, identified biomarkers for patient's selection and monitoring response, as well as targets for improved combination therapy
    corecore