718 research outputs found

    On stability of discretizations of the Helmholtz equation (extended version)

    Full text link
    We review the stability properties of several discretizations of the Helmholtz equation at large wavenumbers. For a model problem in a polygon, a complete kk-explicit stability (including kk-explicit stability of the continuous problem) and convergence theory for high order finite element methods is developed. In particular, quasi-optimality is shown for a fixed number of degrees of freedom per wavelength if the mesh size hh and the approximation order pp are selected such that kh/pkh/p is sufficiently small and p=O(logk)p = O(\log k), and, additionally, appropriate mesh refinement is used near the vertices. We also review the stability properties of two classes of numerical schemes that use piecewise solutions of the homogeneous Helmholtz equation, namely, Least Squares methods and Discontinuous Galerkin (DG) methods. The latter includes the Ultra Weak Variational Formulation

    Calibrating soybean parameters in JULES 5.0 from the US-Ne2/3 FLUXNET sites and the SoyFACE-O3 experiment

    Get PDF
    This is the final version. Available on open access from the European Geosciences Union via the DOI in this record.Code availability. This study uses JULES version 5.0 releases. The code and configuration for the SoyFACE runs can be downloaded via the Met Office Science Repository Service (MOSRS) at https://code.metoffice.gov.uk/trac/roses-u/browser/a/r/8/6/6/trunk (JULES Collaboration, 2018) (registration required) and are freely available subject to accepting the terms of the software licence. The Leaf Simulator can be downloaded from https://code.metoffice.gov.uk/trac/utils (Williams et al., 2018) (login required).Data availability. Unless otherwise noted, all site observations discussed in this paper were obtained from the site information pages of the AmeriFlux website hosted by the Oak Ridge National Laboratory (http://fluxnet.fluxdata.org/, AmeriFlux collaboration, 2018) or by personal communication with the Mead site research technologist. The longwave radiation, diffuse radiation, and air pressure from Bondville, Illinois, site can be obtained by the SURFRAD (surface radiation) network from ftp://aftp.cmdl.noaa.gov/data/radiation/surfrad/Bondville_IL/ (NOAA, 2018). The SoyFACE data used for the run are available on MOSRS at https://code.metoffice.gov.uk/trac/roses-u/browser/a/r/8/6/6/trunk/driving_data (Ainsoworth, 2017a), https://code.metoffice.gov.uk/trac/roses-u/browser/a/r/8/6/6/trunk/bin/SoyFACE_gas_exchange_data_2009.csv (Ainsoworth, 2017b), and https://code.metoffice.gov.uk/trac/roses-u/browser/a/r/8/6/6/trunk/ancil_data (Ainsoworth, 2017c).Tropospheric ozone (O3) is the third most important anthropogenic greenhouse gas. O3 is detrimental to plant productivity, and it has a significant impact on crop yield. Currently, the Joint UK Land Environment Simulator (JULES) land surface model includes a representation of global crops (JULES-crop) but does not have crop-specific O3 damage parameters and applies default C3 grass O3 parameters for soybean that underestimate O3 damage. Physiological parameters for O3 damage in soybean in JULES-crop were calibrated against leaf gas-exchange measurements from the Soybean Free Air Concentration Enrichment (SoyFACE) with O3 experiment in Illinois, USA. Other plant parameters were calibrated using an extensive array of soybean observations such as crop height and leaf carbon and meteorological data from FLUXNET sites near Mead, Nebraska, USA. The yield, aboveground carbon, and leaf area index (LAI) of soybean from the SoyFACE experiment were used to evaluate the newly calibrated parameters. The result shows good performance for yield, with the modelled yield being within the spread of the SoyFACE observations. Although JULES-crop is able to reproduce observed LAI seasonality, its magnitude is underestimated. The newly calibrated version of JULES will be applied regionally and globally in future JULES simulations. This study helps to build a state-of-the-art impact assessment model and contribute to a more complete understanding of the impacts of climate change on food production.Natural Environment Research Council (NERC)European Commissio

    Understanding, Explaining, and Deriving Refinement

    Get PDF
    Much of what drove us in over twenty years of research in refinement, starting with Z in particular, was the desire to understand where refinement rules came from. The relational model of refinement provided a solid starting point which allowed the derivation of Z refinement rules. Not only did this explain and verify the existing rules - more importantly, it also allowed alternative derivations for different and generalised notions of refinement. In this chapter, we briefly describe the context of our early efforts in this area and Susan Stepney's role in this, before moving on to the motivation and exploration of a recently developed primitive model of refinement: concrete state machines with anonymous transitions

    The increasing importance of atmospheric demand for ecosystem water and carbon fluxes

    Get PDF
    Soil moisture supply and atmospheric demand for water independently limit—and profoundly affect—vegetation productivity and water use during periods of hydrologic stress1, 2, 3, 4. Disentangling the impact of these two drivers on ecosystem carbon and water cycling is difficult because they are often correlated, and experimental tools for manipulating atmospheric demand in the field are lacking. Consequently, the role of atmospheric demand is often not adequately factored into experiments or represented in models5, 6, 7. Here we show that atmospheric demand limits surface conductance and evapotranspiration to a greater extent than soil moisture in many biomes, including mesic forests that are of particular importance to the terrestrial carbon sink8, 9. Further, using projections from ten general circulation models, we show that climate change will increase the importance of atmospheric constraints to carbon and water fluxes in all ecosystems. Consequently, atmospheric demand will become increasingly important for vegetation function, accounting for >70% of growing season limitation to surface conductance in mesic temperate forests. Our results suggest that failure to consider the limiting role of atmospheric demand in experimental designs, simulation models and land management strategies will lead to incorrect projections of ecosystem responses to future climate conditions

    Lifestyle physical activity among urban Palestinians and Israelis: a cross-sectional comparison in the Palestinian-Israeli Jerusalem risk factor study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Urban Palestinians have a high incidence of coronary heart disease, and alarming prevalences of obesity (particularly among women) and diabetes. An active lifestyle can help prevent these conditions. Little is known about the physical activity (PA) behavior of Palestinians. This study aimed to determine the prevalence of insufficient PA and its socio-demographic correlates among urban Palestinians in comparison with Israelis.</p> <p>Methods</p> <p>An age-sex stratified random sample of Palestinians and Israelis aged 25-74 years living in east and west Jerusalem was drawn from the Israel National Population Registry: 970 Palestinians and 712 Israelis participated. PA in a typical week was assessed by the Multi-Ethnic Study of Atherosclerosis (MESA) questionnaire. Energy expenditure (EE), calculated in metabolic equivalents (METs), was compared between groups for moderate to vigorous-intensity physical activity (MVPA), using the Wilcoxon rank-sum test, and for domain-specific prevalence rates of meeting public health guidelines and all-domain insufficient PA. Correlates of insufficient PA were assessed by multivariable logistic modeling.</p> <p>Results</p> <p>Palestinian men had the highest median of MVPA (4740 METs-min<sub>*</sub>wk<sup>-1</sup>) compared to Israeli men (2,205 METs-min<sub>*</sub>wk<sup>-1 </sup><it>p </it>< 0.0001), or to Palestinian and Israeli women, who had similar medians (2776 METs-min<sub>*</sub>wk<sup>-1</sup>). Two thirds (65%) of the total MVPA reported by Palestinian women were derived from domestic chores compared to 36% in Israeli women and 25% among Palestinian and Israeli men. A high proportion (63%) of Palestinian men met the PA recommendations by occupation/domestic activity, compared to 39% of Palestinian women and 37% of the Israelis. No leisure time PA was reported by 42% and 39% of Palestinian and Israeli men (<it>p </it>= 0.337) and 53% and 28% of Palestinian and Israeli women (<it>p </it>< 0.0001). Palestinian women reported the lowest level of walking. Considering all domains, 26% of Palestinian women were classified as insufficiently active versus 13% of Palestinian men (<it>p </it>< 0.0001) who did not differ from the Israeli sample (14%). Middle-aged and elderly and less educated Palestinian women, and unemployed and pensioned Palestinian men were at particularly high risk of inactivity. Socio-economic indicators only partially explained the ethnic disparity.</p> <p>Conclusions</p> <p>Substantial proportions of Palestinian women, and subgroups of Palestinian men, are insufficiently active. Culturally appropriate intervention strategies are warranted, particularly for this vulnerable population.</p

    Type D personality is associated with increased metabolic syndrome prevalence and an unhealthy lifestyle in a cross-sectional Dutch community sample

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>People with Type D-Distressed-personality have a general tendency towards increased negative affectivity (NA), while at the same time inhibiting these emotions in social situations (SI). Type D personality is associated with an increased risk of adverse outcomes in patients with cardiovascular disease. Whether Type D personality is a cardiovascular risk factor in healthy populations remains to be investigated. In the present study, the relations between Type D personality and classical cardiovascular risk factors, i.e. metabolic syndrome and lifestyle were investigated in a Dutch community sample.</p> <p>Methods</p> <p>In a cross-sectional study 1592 participants were included, aged 20-80 years. Metabolic syndrome was defined by self-report, following the International Diabetes Federation-IDF-guidelines including an increased waist circumference, dyslipidemia, hypertension, and diabetes. In addition lifestyle factors smoking, alcohol use, exercise and dietary habits were examined. Metabolic syndrome prevalence was stratified by Type D personality (a high score on both NA and SI), lifestyle and confounders age, gender, having a partner, higher education level, cardiac history, family history of cardiovascular disease.</p> <p>Results</p> <p>Metabolic syndrome was more prevalent in persons with a Type D personality (13% vs. 6%). Persons with Type D personality made poorer lifestyle choices, adhered less to the physical activity norm (OR = 1.5, 95%CI = 1.1-2.0, <it>p </it>= .02), had a less varied diet (OR = 0.50, 95%CI = 0.40-0.70, <it>p </it>< .0005), and were less likely to restrict their fat intake (OR = 0.70, 95%CI = 0.50-0.90, <it>p </it>= .01). Type D personality was related to a twofold increased risk of metabolic syndrome (OR = 2.2, 95%CI = 1.2-4.0, <it>p </it>= .011), independent of lifestyle factors and confounders.</p> <p>Conclusions</p> <p>Type D personality is related to an increased prevalence of metabolic syndrome and unhealthy lifestyle, which suggests both behavioral and biological vulnerability for development of cardiovascular disorders and diabetes.</p

    Elevated atmospheric CO2 and humidity delay leaf fall in Betula pendula, but not in Alnus glutinosa or Populus tremula × tremuloides

    Get PDF
    Context: Anthropogenic activity has increased the level of atmospheric CO2, which is driving an increase of global temperatures and associated changes in precipitation patterns. At Northern latitudes, one of the likely consequences of global warming is increased precipitation and air humidity. Aims: In this work, the effects of both elevated atmospheric CO2 and increased air humidity on trees commonly growing in northern European forests were assessed. Methods: The work was carried out under field conditions by using Free Air Carbon dioxide Enrichment (FACE) and Free Air Humidity Manipulation (FAHM) systems. Leaf litter fall was measured over 4 years (FACE) or 5 years (FAHM) to determine the effects of FACE and FAHM on leaf phenology. Results: Increasing air humidity delayed leaf litter fall in Betula pendula, but not in Populus tremula × tremuloides. Similarly, under elevated atmospheric CO2, leaf litter fall was delayed in Betula pendula, but not in Alnus glutinosa. Increased CO2 appeared to interact with periods of low precipitation in summer and high ozone levels during these periods to effect leaf fall. Conclusions: This work shows that increased CO2 and humidity delay leaf fall, but this effect is species specific
    corecore