2,093 research outputs found

    Non-renormalization theorems without supergraphs: The Wess-Zumino model

    Get PDF
    The non-renormalization theorems of chiral vertex functions are derived on the basis of an algebraic analysis. The property, that the interaction vertex is a second supersymmetry variation of a lower dimensional field monomial, is used to relate chiral Green functions to superficially convergent Green functions by extracting the two supersymmetry variations from an internal vertex and transforming them to derivatives acting on external legs. The analysis is valid in the massive as well as in the massless model and can be performed irrespective of properties of the superpotential at vanishing momentum.Comment: 20 pages, Latex, added acknowledgment

    Stickiness in Hamiltonian systems: from sharply divided to hierarchical phase space

    Get PDF
    We investigate the dynamics of chaotic trajectories in simple yet physically important Hamiltonian systems with non-hierarchical borders between regular and chaotic regions with positive measures. We show that the stickiness to the border of the regular regions in systems with such a sharply divided phase space occurs through one-parameter families of marginally unstable periodic orbits and is characterized by an exponent \gamma= 2 for the asymptotic power-law decay of the distribution of recurrence times. Generic perturbations lead to systems with hierarchical phase space, where the stickiness is apparently enhanced due to the presence of infinitely many regular islands and Cantori. In this case, we show that the distribution of recurrence times can be composed of a sum of exponentials or a sum of power-laws, depending on the relative contribution of the primary and secondary structures of the hierarchy. Numerical verification of our main results are provided for area-preserving maps, mushroom billiards, and the newly defined magnetic mushroom billiards.Comment: To appear in Phys. Rev. E. A PDF version with higher resolution figures is available at http://www.pks.mpg.de/~edugal

    Explicit Bosonization of the Massive Thirring Model in 3+1 Dimensions

    Get PDF
    We bosonize the Massive Thirring Model in 3+1D for small coupling constant and arbitrary mass. The bosonized action is explicitly obtained both in terms of a Kalb-Ramond tensor field as well as in terms of a dual vector field. An exact bosonization formula for the current is derived. The small and large mass limits of the bosonized theory are examined in both the direct and dual forms. We finally obtain the exact bosonization of the free fermion with an arbitrary mass.Comment: Latex, 7 page

    Massless Decoupled Doublers: Chiral Yukawa Models and Chiral Gauge Theories

    Full text link
    We present a new method for regularizing chiral theories on the lattice. The arbitrariness in the regularization is used in order to decouple massless replica fermions. A continuum limit with only one fermion is obtained in perturbation theory and a Golterman-Petcher like symmetry related to the decoupling of the replicas in the non-perturbative regime is identified. In the case of Chiral Gauge Theories gauge invariance is broken at the level of the regularization, so our approach shares many of the characteristics of the Rome approach.Comment: 11 page

    Higher-order non-symmetric counterterms in pure Yang-Mills theory

    Full text link
    We analyze the restoration of the Slavnov-Taylor (ST) identities for pure massless Yang-Mills theory in the Landau gauge within the BPHZL renormalization scheme with IR regulator. We obtain the most general form of the action-like part of the symmetric regularized action, obeying the relevant ST identities and all other relevant symmetries of the model, to all orders in the loop expansion. We also give a cohomological characterization of the fulfillment of BPHZL IR power-counting criterion, guaranteeing the existence of the limit where the IR regulator goes to zero. The technique analyzed in this paper is needed in the study of the restoration of the ST identities for those models, like the MSSM, where massless particles are present and no invariant regularization scheme is known to preserve the full set of ST identities of the theory.Comment: Final version published in the journa

    Constructive algebraic renormalization of the abelian Higgs-Kibble model

    Get PDF
    We propose an algorithm, based on Algebraic Renormalization, that allows the restoration of Slavnov-Taylor invariance at every order of perturbation expansion for an anomaly-free BRS invariant gauge theory. The counterterms are explicitly constructed in terms of a set of one-particle-irreducible Feynman amplitudes evaluated at zero momentum (and derivatives of them). The approach is here discussed in the case of the abelian Higgs-Kibble model, where the zero momentum limit can be safely performed. The normalization conditions are imposed by means of the Slavnov-Taylor invariants and are chosen in order to simplify the calculation of the counterterms. In particular within this model all counterterms involving BRS external sources (anti-fields) can be put to zero with the exception of the fermion sector.Comment: Jul, 1998, 31 page

    Hyperbolic outer billiards : a first example

    Full text link
    We present the first example of a hyperbolic outer billiard. More precisely we construct a one parameter family of examples which in some sense correspond to the Bunimovich billiards.Comment: 11 pages, 8 figures, to appear in Nonlinearit

    On the trace identity in a model with broken symmetry

    Get PDF
    Considering the simple chiral fermion meson model when the chiral symmetry is explicitly broken, we show the validity of a trace identity -- to all orders of perturbation theory -- playing the role of a Callan-Symanzik equation and which allows us to identify directly the breaking of dilatations with the trace of the energy-momentum tensor. More precisely, by coupling the quantum field theory considered to a classical curved space background, represented by the non-propagating external vielbein field, we can express the conservation of the energy-momentum tensor through the Ward identity which characterizes the invariance of the theory under the diffeomorphisms. Our ``Callan-Symanzik equation'' then is the anomalous Ward identity for the trace of the energy-momentum tensor, the so-called ``trace identity''.Comment: 11 pages, Revtex file, final version to appear in Phys.Rev.

    Exact solution (by algebraic methods) of the lattice Schwinger model in the strong-coupling regime

    Full text link
    Using the monomer--dimer representation of the lattice Schwinger model, with Nf=1N_f =1 Wilson fermions in the strong--coupling regime (ÎČ=0\beta=0), we evaluate its partition function, ZZ, exactly on finite lattices. By studying the zeroes of Z(k)Z(k) in the complex plane (Re(k),Im(k))(Re(k),Im(k)) for a large number of small lattices, we find the zeroes closest to the real axis for infinite stripes in temporal direction and spatial extent S=2S=2 and 3. We find evidence for the existence of a critical value for the hopping parameter in the thermodynamic limit S→∞S\rightarrow \infty on the real axis at about kc≃0.39k_c \simeq 0.39. By looking at the behaviour of quantities, such as the chiral condensate, the chiral susceptibility and the third derivative of ZZ with respect to 1/2k1/2k, close to the critical point kck_c, we find some indications for a continuous phase transition.Comment: 22 pages (6 figures
    • 

    corecore