75 research outputs found
Optimizing Salesperson Performance: A Flow Theory Perspective
A sample of 125 salespeople from 13 countries was surveyed to assess the effects of flow on salesperson performance. Salespeople achieve the flow state when their skills match the challenges of the sales situation, and the challenge/skill balance is high. Exploratory and confirmatory factor analyses followed by a cluster analysis indicated that there was a significant difference in sales performance among salespeople with different levels of the flow state. The article concludes with managerial implications and directions for future research
Recent Extreme Ultraviolet Solar Spectra and Spectroheliograms
Extreme ultraviolet solar spectra and spectroheliogram analyse
Evidence of Impulsive Heating in Active Region Core Loops
Using a full spectral scan of an active region from the Extreme-Ultraviolet
Imaging Spectrometer (EIS) we have obtained Emission Measure EM
distributions in two different moss regions within the same active region. We
have compared these with theoretical transition region EMs derived for three
limiting cases, namely \textit{static equilibrium}, \textit{strong
condensation} and \textit{strong evaporation} from \cite{ebtel}. The EM
distributions in both the moss regions are strikingly similar and show a
monotonically increasing trend from . Using
photospheric abundances we obtain a consistent EM distribution for all ions.
Comparing the observed and theoretical EM distributions, we find that the
observed EM distribution is best explained by the \textit{strong condensation}
case (EM), suggesting that a downward enthalpy flux plays an important
and possibly dominant role in powering the transition region moss emission. The
downflows could be due to unresolved coronal plasma that is cooling and
draining after having been impulsively heated. This supports the idea that the
hot loops (with temperatures of 3{-}5 MK) seen in the core of active regions
are heated by nanoflares.Comment: 17 pages, 4 figures, Accepted for publication in The Astrophysical
Journa
Abundance variations and first ionization potential trends during large stellar flares
The Solar First Ionization Potential (FIP) effect, where low-FIP elements are
enriched in the corona relative to the photosphere, while high-FIP abundances
remain unchanged, has been known for a long while. High resolution X-ray
spectroscopy has revealed that active stellar coronae show an opposite effect,
which was labeled the Inverse-FIP (IFIP) effect. The correlation found between
coronal activity and the FIP/IFIP bias suggested perhaps that flaring activity
is involved in switching from FIP to IFIP. This work aims at a more systematic
understanding of the FIP trends during stellar flares and complements an
earlier study based on Chandra alone. The eight brightest X-ray flares observed
with XMM-Newton are analyzed and compared with their respective quiescence
states. Together with six previous flares observed with Chandra, this
establishes the best currently available sample of flares. We look for
abundance variations during the flare and their correlation with FIP. For that
purpose, we define a new FIP bias measure. A trend is found where coronae that
are IFIP biased in quiescence, during flares show a FIP bias with respect to
their quiescence composition. This effect is reversed for coronae that are FIP
biased in quiescence. The observed trend is thus consistent with chromospheric
evaporation rather than with a FIP mechanism operating during flares. It also
suggests that the quiescent IFIP bias is real and that the large flares are not
the direct cause of the IFIP effect in stellar coronae.Comment: 12 pages, 6 figures, submitted to A&
Temperature distribution of a non-flaring active region from simultaneous Hinode XRT and EIS observations
We analyze coordinated Hinode XRT and EIS observations of a non-flaring
active region to investigate the thermal properties of coronal plasma taking
advantage of the complementary diagnostics provided by the two instruments. In
particular we want to explore the presence of hot plasma in non-flaring
regions. Independent temperature analyses from the XRT multi-filter dataset,
and the EIS spectra, including the instrument entire wavelength range, provide
a cross-check of the different temperature diagnostics techniques applicable to
broad-band and spectral data respectively, and insights into cross-calibration
of the two instruments. The emission measure distribution, EM(T), we derive
from the two datasets have similar width and peak temperature, but show a
systematic shift of the absolute values, the EIS EM(T) being smaller than XRT
EM(T) by approximately a factor 2. We explore possible causes of this
discrepancy, and we discuss the influence of the assumptions for the plasma
element abundances. Specifically, we find that the disagreement between the
results from the two instruments is significantly mitigated by assuming
chemical composition closer to the solar photospheric composition rather than
the often adopted "coronal" composition (Feldman 1992). We find that the data
do not provide conclusive evidence on the high temperature (log T[K] >~ 6.5)
tail of the plasma temperature distribution, however, suggesting its presence
to a level in agreement with recent findings for other non-flaring regions.Comment: 14 pages, 15 figures. Accepted for publication in the Astrophysical
Journa
Velocity measurements for a solar active region fan loop from Hinode/EIS observations
The velocity pattern of a fan loop structure within a solar active region
over the temperature range 0.15-1.5 MK is derived using data from the EUV
Imaging Spectrometer (EIS) on board the Hinode satellite. The loop is aligned
towards the observer's line-of-sight and shows downflows (redshifts) of around
15 km/s up to a temperature of 0.8 MK, but for temperatures of 1.0 MK and above
the measured velocity shifts are consistent with no net flow. This velocity
result applies over a projected spatial distance of 9 Mm and demonstrates that
the cooler, redshifted plasma is physically disconnected from the hotter,
stationary plasma. A scenario in which the fan loops consist of at least two
groups of "strands" - one cooler and downflowing, the other hotter and
stationary -- is suggested. The cooler strands may represent a later
evolutionary stage of the hotter strands. A density diagnostic of Mg VII was
used to show that the electron density at around 0.8 MK falls from 3.2 x 10^9
cm^-3 at the loop base, to 5.0 x 10^8 cm^-3 at a projected height of 15 Mm. A
filling factor of 0.2 is found at temperatures close to the formation
temperature of Mg VII (0.8 MK), confirming that the cooler, downflowing plasma
occupies only a fraction of the apparent loop volume. The fan loop is rooted
within a so-called "outflow region" that displays low intensity and blueshifts
of up to 25 km/s in Fe XII 195.12 A (formed at 1.5 MK), in contrast to the
loop's redshifts of 15 km/s at 0.8 MK. A new technique for obtaining an
absolute wavelength calibration for the EIS instrument is presented and an
instrumental effect, possibly related to a distorted point spread function,
that affects velocity measurements is identified.Comment: 42 pages, 15 figures, submitted to Ap
Physics of Solar Prominences: I - Spectral Diagnostics and Non-LTE Modelling
This review paper outlines background information and covers recent advances
made via the analysis of spectra and images of prominence plasma and the
increased sophistication of non-LTE (ie when there is a departure from Local
Thermodynamic Equilibrium) radiative transfer models. We first describe the
spectral inversion techniques that have been used to infer the plasma
parameters important for the general properties of the prominence plasma in
both its cool core and the hotter prominence-corona transition region. We also
review studies devoted to the observation of bulk motions of the prominence
plasma and to the determination of prominence mass. However, a simple inversion
of spectroscopic data usually fails when the lines become optically thick at
certain wavelengths. Therefore, complex non-LTE models become necessary. We
thus present the basics of non-LTE radiative transfer theory and the associated
multi-level radiative transfer problems. The main results of one- and
two-dimensional models of the prominences and their fine-structures are
presented. We then discuss the energy balance in various prominence models.
Finally, we outline the outstanding observational and theoretical questions,
and the directions for future progress in our understanding of solar
prominences.Comment: 96 pages, 37 figures, Space Science Reviews. Some figures may have a
better resolution in the published version. New version reflects minor
changes brought after proof editin
Solar Coronal Plumes
Polar plumes are thin long ray-like structures that project beyond the limb of the Sun polar regions, maintaining their identity over distances of several solar radii. Plumes have been first observed in white-light (WL) images of the Sun, but, with the advent of the space era, they have been identified also in X-ray and UV wavelengths (XUV) and, possibly, even in in situ data. This review traces the history of plumes, from the time they have been first imaged, to the complex means by which nowadays we attempt to reconstruct their 3-D structure. Spectroscopic techniques allowed us also to infer the physical parameters of plumes and estimate their electron and kinetic temperatures and their densities. However, perhaps the most interesting problem we need to solve is the role they cover in the solar wind origin and acceleration: Does the solar wind emanate from plumes or from the ambient coronal hole wherein they are embedded? Do plumes have a role in solar wind acceleration and mass loading? Answers to these questions are still somewhat ambiguous and theoretical modeling does not provide definite answers either. Recent data, with an unprecedented high spatial and temporal resolution, provide new information on the fine structure of plumes, their temporal evolution and relationship with other transient phenomena that may shed further light on these elusive features
- …