136 research outputs found
Intellectual disability-associated disruption of O-GlcNAcylation impairs neuronal development and cognition-relevant habituation learning in Drosophila
O-GlcNAcylation is a reversible co-/post-translational modification involved in a multitude of cellular processes. The addition and removal of the O-GlcNAc modification is controlled by two conserved enzymes, O-GlcNAc transferase (OGT) and O-GlcNAc hydrolase (OGA). Mutations in OGT have recently been discovered to cause a novel Congenital Disorder of Glycosylation (OGT-CDG) that is characterized by intellectual disability. The mechanisms by which OGT-CDG mutations affect cognition remain unclear. We manipulated O-GlcNAc transferase and O-GlcNAc hydrolase activity in Drosophila and demonstrate an important role of O-GlcNAcylation in habituation learning and synaptic development at the larval neuromuscular junction. Introduction of patient-specific missense mutations into Drosophila O-GlcNAc transferase using CRISPR/Cas9 gene editing leads to deficits in locomotor function and habituation learning. The habituation deficit can be corrected by blocking O-GlcNAc hydrolysis, indicating that OGT-CDG mutations affect cognition-relevant habituation via reduced protein O-GlcNAcylation. This study establishes a critical role for O-GlcNAc cycling and disrupted O-GlcNAc transferase activity in cognitive dysfunction, and suggests that blocking O-GlcNAc hydrolysis is a potential strategy to treat OGT-CDG
Effects of Visual Experience on Vascular Endothelial Growth Factor Expression during the Postnatal Development of the Rat Visual Cortex
The development of the cortical vascular network depends on functional maturation. External inputs are an essential requirement in the modeling of the visual cortex, mainly during the critical period, when the functional and structural properties of visual cortical neurons are particularly susceptible to alterations. Vascular endothelial growth factor (VEGF) is the major angiogenic factor, a key signal in the induction of vessel growth. Our study focused on the role of visual stimuli on the development of the vascular pattern correlated with VEGF levels. Vascular density and the expression of VEGF were examined in the primary visual cortex of rats reared under different visual environments (dark rearing, dark-rearing in conditions of enriched environment, enriched environment, and laboratory standard conditions) during postnatal development (before, during, and after the critical period). Our results show a restricted VEGF cellular expression to astroglial cells. Quantitative differences appeared during the critical period: higher vascular density and VEGF protein levels were found in the enriched environment group; both dark-reared groups showed lower vascular density and VEGF levels, which means that enriched environment without the physical exercise component does not exert effects in dark-reared rats
Impaired autonomic regulation of resistance arteries in mice with low vascular endothelial growth factor or upon vascular endothelial growth factor trap delivery
Background-Control of peripheral resistance arteries by autonomic nerves is essential for the regulation of blood flow. The signals responsible for the maintenance of vascular neuroeffector mechanisms in the adult, however, remain largely unknown.
Methods and Results-Here, we report that VEGF(partial derivative/partial derivative) mice with low vascular endothelial growth factor (VEGF) levels suffer defects in the regulation of resistance arteries. These defects are due to dysfunction and structural remodeling of the neuroeffector junction, the equivalent of a synapse between autonomic nerve endings and vascular smooth muscle cells, and to an impaired contractile smooth muscle cell phenotype. Notably, short-term delivery of a VEGF inhibitor to healthy mice also resulted in functional and structural defects of neuroeffector junctions.
Conclusions-These findings uncover a novel role for VEGF in the maintenance of arterial neuroeffector function and may help us better understand how VEGF inhibitors cause vascular regulation defects in cancer patients. (Circulation. 2010; 122: 273-281.
VEGF receptors on PC12 cells mediate transient activation of ERK1/2 and Akt: comparison of nerve growth factor and vascular endothelial growth factor
Vascular endothelial growth factor (VEGF) and endostatin are angiogenic and anti-angiogenic molecules, respectively, that have been implicated in neurogenesis and neuronal survival. Using alkaline phosphatase fusion proteins, we show that the PC12 neuronal cell line contains cell membrane receptors for VEGF but not for endostatin and the collagen XV endostatin homologue. Immunocytochemistry confirmed that proliferating and differentiated PC12 cells express VEGF receptors 1, 2 and neuropilin-1. While no functional effects of VEGF on PC12 cell proliferation and differentiation could be observed, a slight VEGF-induced reduction of caspase-3 activity in differentiated apoptotic PC12 cells was paralleled by transient activation of ERK1/2 and Akt. In direct comparison, nerve growth factor proved to be a strikingly more potent neuroprotective agent than VEGF
Extensive Neuronal Differentiation of Human Neural Stem Cell Grafts in Adult Rat Spinal Cord
BACKGROUND: Effective treatments for degenerative and traumatic diseases of the nervous system are not currently available. The support or replacement of injured neurons with neural grafts, already an established approach in experimental therapeutics, has been recently invigorated with the addition of neural and embryonic stem-derived precursors as inexhaustible, self-propagating alternatives to fetal tissues. The adult spinal cord, i.e., the site of common devastating injuries and motor neuron disease, has been an especially challenging target for stem cell therapies. In most cases, neural stem cell (NSC) transplants have shown either poor differentiation or a preferential choice of glial lineages. METHODS AND FINDINGS: In the present investigation, we grafted NSCs from human fetal spinal cord grown in monolayer into the lumbar cord of normal or injured adult nude rats and observed large-scale differentiation of these cells into neurons that formed axons and synapses and established extensive contacts with host motor neurons. Spinal cord microenvironment appeared to influence fate choice, with centrally located cells taking on a predominant neuronal path, and cells located under the pia membrane persisting as NSCs or presenting with astrocytic phenotypes. Slightly fewer than one-tenth of grafted neurons differentiated into oligodendrocytes. The presence of lesions increased the frequency of astrocytic phenotypes in the white matter. CONCLUSIONS: NSC grafts can show substantial neuronal differentiation in the normal and injured adult spinal cord with good potential of integration into host neural circuits. In view of recent similar findings from other laboratories, the extent of neuronal differentiation observed here disputes the notion of a spinal cord that is constitutively unfavorable to neuronal repair. Restoration of spinal cord circuitry in traumatic and degenerative diseases may be more realistic than previously thought, although major challenges remain, especially with respect to the establishment of neuromuscular connections
The Expression of VEGF-A Is Down Regulated in Peripheral Blood Mononuclear Cells of Patients with Secondary Progressive Multiple Sclerosis
BACKGROUND: Most patients with relapsing-remitting multiple sclerosis (RRMS) eventually enter a secondary progressive (SPMS) phase, characterized by increasing neurological disability. The mechanisms underlying transition to SPMS are unknown and effective treatments and biomarkers are lacking. Vascular endothelial growth factor-A (VEGF-A) is an angiogenic factor with neuroprotective effects that has been associated with neurodegenerative diseases. SPMS has a prominent neurodegenerative facet and we investigated a possible role for VEGF-A during transition from RRMS to SPMS. METHODOLOGY/PRINCIPAL FINDINGS: VEGF-A mRNA expression in peripheral blood mononuclear (PBMC) and cerebrospinal fluid (CSF) cells from RRMS (n = 128), SPMS (n = 55) and controls (n = 116) were analyzed using real time PCR. We demonstrate reduced expression of VEGF-A mRNA in MS CSF cells compared to controls (p<0.001) irrespective of disease course and expression levels are restored by natalizumab treatment(p<0.001). VEGF-A was primarily expressed in monocytes and our CSF findings in part may be explained by effects on relative monocyte proportions. However, VEGF-A mRNA expression was also down regulated in the peripheral compartment of SPMS (p<0.001), despite unchanged monocyte counts, demonstrating a particular phenotype differentiating SPMS from RRMS and controls. A possible association of allelic variability in the VEGF-A gene to risk of MS was also studied by genotyping for six single nucleotide polymorphisms (SNPs) in MS (n = 1114) and controls (n = 1234), which, however, did not demonstrate any significant association between VEGF-A alleles and risk of MS. CONCLUSIONS/SIGNIFICANCE: Expression of VEGF-A in CSF cells is reduced in MS patients compared to controls irrespective of disease course. In addition, SPMS patients display reduced VEGF-A mRNA expression in PBMC, which distinguish them from RRMS and controls. This indicates a possible role for VEGF-A in the mechanisms regulating transition to SPMS. Decreased levels of PBMC VEGF-A mRNA expression should be further evaluated as a biomarker for SPMS
C9orf72 arginine-rich dipeptide proteins interact with ribosomal proteins in vivo to induce a toxic translational arrest that is rescued by eIF1A.
A GGGGCC hexanucleotide repeat expansion within the C9orf72 gene is the most common genetic cause of both amyotrophic lateral sclerosis and frontotemporal dementia. Sense and antisense repeat-containing transcripts undergo repeat-associated non-AUG-initiated translation to produce five dipeptide proteins (DPRs). The polyGR and polyPR DPRs are extremely toxic when expressed in Drosophila neurons. To determine the mechanism that mediates this toxicity, we purified DPRs from the Drosophila brain and used mass spectrometry to identify the in vivo neuronal DPR interactome. PolyGR and polyPR interact with ribosomal proteins, and inhibit translation in both human iPSC-derived motor neurons, and adult Drosophila neurons. We next performed a screen of 81 translation-associated proteins in GGGGCC repeat-expressing Drosophila to determine whether this translational repression can be overcome and if this impacts neurodegeneration. Expression of the translation initiation factor eIF1A uniquely rescued DPR-induced toxicity in vivo, indicating that restoring translation is a potential therapeutic strategy. These data directly implicate translational repression in C9orf72 repeat-induced neurodegeneration and identify eIF1A as a novel modifier of C9orf72 repeat toxicity
Charcot-Marie-Tooth–Linked Mutant GARS Is Toxic to Peripheral Neurons Independent of Wild-Type GARS Levels
Charcot-Marie-Tooth disease type 2D (CMT2D) is a dominantly inherited peripheral neuropathy caused by missense mutations in the glycyl-tRNA synthetase gene (GARS). In addition to GARS, mutations in three other tRNA synthetase genes cause similar neuropathies, although the underlying mechanisms are not fully understood. To address this, we generated transgenic mice that ubiquitously over-express wild-type GARS and crossed them to two dominant mouse models of CMT2D to distinguish loss-of-function and gain-of-function mechanisms. Over-expression of wild-type GARS does not improve the neuropathy phenotype in heterozygous Gars mutant mice, as determined by histological, functional, and behavioral tests. Transgenic GARS is able to rescue a pathological point mutation as a homozygote or in complementation tests with a Gars null allele, demonstrating the functionality of the transgene and revealing a recessive loss-of-function component of the point mutation. Missense mutations as transgene-rescued homozygotes or compound heterozygotes have a more severe neuropathy than heterozygotes, indicating that increased dosage of the disease-causing alleles results in a more severe neurological phenotype, even in the presence of a wild-type transgene. We conclude that, although missense mutations of Gars may cause some loss of function, the dominant neuropathy phenotype observed in mice is caused by a dose-dependent gain of function that is not mitigated by over-expression of functional wild-type protein
Ex Vivo VEGF Delivery by Neural Stem Cells Enhances Proliferation of Glial Progenitors, Angiogenesis, and Tissue Sparing after Spinal Cord Injury
The present study was undertaken to examine multifaceted therapeutic effects of vascular endothelial growth factor (VEGF) in a rat spinal cord injury (SCI) model, focusing on its capability to stimulate proliferation of endogenous glial progenitor cells. Neural stem cells (NSCs) can be genetically modified to efficiently transfer therapeutic genes to diseased CNS. We adopted an ex vivo approach using immortalized human NSC line (F3 cells) to achieve stable and robust expression of VEGF in the injured spinal cord. Transplantation of NSCs retrovirally transduced to overexpress VEGF (F3.VEGF cells) at 7 days after contusive SCI markedly elevated the amount of VEGF in the injured spinal cord tissue compared to injection of PBS or F3 cells without VEGF. Concomitantly, phosphorylation of VEGF receptor flk-1 increased in F3.VEGF group. Stereological counting of BrdU+ cells revealed that transplantation of F3.VEGF significantly enhanced cellular proliferation at 2 weeks after SCI. The number of proliferating NG2+ glial progenitor cells (NG2+/BrdU+) was also increased by F3.VEGF. Furthermore, transplantation of F3.VEGF increased the number of early proliferating cells that differentiated into mature oligodendrocytes, but not astrocytes, at 6 weeks after SCI. F3.VEGF treatment also increased the density of blood vessels in the injured spinal cord and enhanced tissue sparing. These anatomical results were accompanied by improved BBB locomotor scores. The multifaceted effects of VEGF on endogenous gliogenesis, angiogenesis, and tissue sparing could be utilized to improve functional outcomes following SCI
Defining novel functions for cerebrospinal fluid in ALS pathophysiology
Despite the considerable progress made towards understanding ALS pathophysiology, several key features of ALS remain unexplained, from its aetiology to its epidemiological aspects. The glymphatic system, which has recently been recognised as a major clearance pathway for the brain, has received considerable attention in several neurological conditions, particularly Alzheimer's disease. Its significance in ALS has, however, been little addressed. This perspective article therefore aims to assess the possibility of CSF contribution in ALS by considering various lines of evidence, including the abnormal composition of ALS-CSF, its toxicity and the evidence for impaired CSF dynamics in ALS patients. We also describe a potential role for CSF circulation in determining disease spread as well as the importance of CSF dynamics in ALS neurotherapeutics. We propose that a CSF model could potentially offer additional avenues to explore currently unexplained features of ALS, ultimately leading to new treatment options for people with ALS.</p
- …