687 research outputs found

    Are diet preferences associated to skulls shape diversification in xenodontine snakes?

    Get PDF
    Snakes are a highly successful group of vertebrates, within great diversity in habitat, diet, and morphology. The unique adaptations for the snake skull for ingesting large prey in more primitive macrostomatan snakes have been well documented. However, subsequent diversification in snake cranial shape in relation to dietary specializations has rarely been studied (e.g. piscivory in natricine snakes). Here we examine a large clade of snakes with a broad spectrum of diet preferences to test if diet preferences are correlated to shape variation in snake skulls. Specifically, we studied the Xenodontinae snakes, a speciose clade of South American snakes, which show a broad range of diets including invertebrates, amphibians, snakes, lizards, and small mammals. We characterized the skull morphology of 19 species of xenodontine snakes using geometric morphometric techniques, and used phylogenetic comparative methods to test the association between diet and skull morphology. Using phylogenetic partial least squares analysis (PPLS) we show that skull morphology is highly associated with diet preferences in xenodontine snakes.Julia Klaczko, Emma Sherratt, Eleonore Z. F. Set

    The mathematical modelling of cell kinetics in corneal epithelial wound healing

    Get PDF
    This paper considers the comparison of experimental spatial and temporal data of mitotic rates measured during corneal epithelial wound healing (CEWH) of a rat model with the predictions of a computer modelling framework. We begin by briefly showing that previous models, used in the study of corneal epithelial wound healing speeds, are inadequate for the study of cell kinetics. We proceed to formulate a new modelling framework more suited to such a study. This framework is simulated in its simplest form, and the results from this motivate a new realisation of the modelling framework, including a caricature of age structuring. Finally, a model with a simple representation of juxtacrine signalling is considered. The final model captures many, though not all, of the trends of the experimental data. This paper thus lays a foundation for the modelling of the cell kinetics of corneal epithelial wound healing, and yields valuable insight regarding the important mechanisms a model should consider in order to reproduce the observed experimental trends

    The role of cell-cell adhesion in wound healing

    Full text link
    We present a stochastic model which describes fronts of cells invading a wound. In the model cells can move, proliferate, and experience cell-cell adhesion. We find several qualitatively different regimes of front motion and analyze the transitions between them. Above a critical value of adhesion and for small proliferation large isolated clusters are formed ahead of the front. This is mapped onto the well-known ferromagnetic phase transition in the Ising model. For large adhesion, and larger proliferation the clusters become connected (at some fixed time). For adhesion below the critical value the results are similar to our previous work which neglected adhesion. The results are compared with experiments, and possible directions of future work are proposed.Comment: to appear in Journal of Statistical Physic

    Wound healing in the corneal epithelium: biological mechanisms and mathematical models

    Get PDF
    Corneal epithelium has a highly specialised wound-healing response. The biological aspects of this repair process are reviewed, and methods of modelling it mathematically are described. A model which focuses on the source of epidermal growth factor (EGF) within a healing wound is described. By considering mathematical representations of a number of possible source terms, it is shown that the EGF present in the tear film is insufficient to explain the observed rate of healing, and experimental approaches are suggested for distinguishing between other sources. Also, the simulation of exogenous addition of EGF using the model is described. An issue that has been the subject of considerable debate in the literature is the role of eyeball curvature. The mode is used to show that this curvature is not significant for either the speed or form of healing in the epithelium. In conclusion, a comparison is made between wound healing in the corneal epithelium with that in the epidermis of the skin. Possible directions for future modelling work are considered

    Evolution of extreme ontogenetic allometric diversity and heterochrony in pythons, a clade of giant and dwarf snakes

    Get PDF
    Ontogenetic allometry, how species change with size through their lives, and heterochony, a decoupling between shape, size, and age, are major contributors to biological diversity. However, macroevolutionary allometric and heterochronic trends remain poorly understood because previous studies have focused on small groups of closely related species. Here, we focus on testing hypotheses about the evolution of allometry and how allometry and heterochrony drive morphological diversification at the level of an entire species-rich and diverse clade. Pythons are a useful system due to their remarkably diverse and well-adapted phenotypes and extreme size disparity. We collected detailed phenotype data on 40 of the 44 species of python from 1191 specimens. We used a suite of analyses to test for shifts in allometric trajectories that modify morphological diversity. Heterochrony is the main driver of initial divergence within python clades, and shifts in the slopes of allometric trajectories make exploration of novel phenotypes possible later in divergence history. We found that allometric coefficients are highly evolvable and there is an association between ontogenetic allometry and ecology, suggesting that allometry is both labile and adaptive rather than a constraint on possible phenotypes.Damien Esquerré, Emma Sherratt, J. Scott Keog

    KOPS-guided DNA translocation by FtsK safeguards Escherichia coli chromosome segregation

    Get PDF
    The septum-located DNA translocase, FtsK, acts to co-ordinate the late steps of Escherichia coli chromosome segregation with cell division. The FtsK γ regulatory subdomain interacts with 8 bp KOPS DNA sequences, which are oriented from the replication origin to the terminus region (ter) in each arm of the chromosome. This interaction directs FtsK translocation towards ter where the final chromosome unlinking by decatenation and chromosome dimer resolution occurs. Chromosome dimer resolution requires FtsK translocation along DNA and its interaction with the XerCD recombinase bound to the recombination site, dif, located within ter. The frequency of chromosome dimer formation is ∼15% per generation in wild-type cells. Here we characterize FtsK alleles that no longer recognize KOPS, yet are proficient for translocation and chromosome dimer resolution. Non-directed FtsK translocation leads to a small reduction in fitness in otherwise normal cell populations, as a consequence of ∼70% of chromosome dimers being resolved to monomers. More serious consequences arise when chromosome dimer formation is increased, or their resolution efficiency is impaired because of defects in chromosome organization and processing. For example, when Cre–loxP recombination replaces XerCD–dif recombination in dimer resolution, when functional MukBEF is absent, or when replication terminates away from ter

    Anatomical correlates of cursoriality are compromised by body size and propensity to burrow in a group of small mammals (Lagomorpha)

    Get PDF
    Highly cursorial animals are specialised for fast, sustained running via specific morphological adaptations, notably including changes in limb segment length and mechanical advantage. Members of the order Lagomorpha (hares, rabbits and pikas) vary in cursorial ability; hares are generally highly cursorial, rabbits more frequently saltate, and pikas predominantly trot. Previous investigations of lagomorphs have identified anatomical trends correlated with this ‘cursoriality gradient’, however, the phylogenetic sampling of such investigations has been limited to three American species, namely the American pika (Ochotona princeps), brush rabbit (Sylvilagus bachmani), and black-tailed jackrabbit (Lepus californicus). Here, we expand the phylogenetic sample and body size range by including novel data from Australian samples of the European rabbit (Oryctolagus cuniculus) and European hare (L. europaeus), alongside unpublished data on the Eastern cottontail (S. floridanus). X-ray Computed Tomography and digital landmarking were used to capture proportions within the appendicular skeleton of ~ 40 specimens of each European species. In doubling the number of species studied, we find the previously-identified morphological gradients associated with cursorial behaviour are complicated when evaluated in the larger sample. The relative length and joint velocity of limbs was found to be lower than predicted in European rabbits and hares. Furthermore, we present a novel assessment of morphological integration in the lagomorph appendicular skeleton, finding between-limb covariation patterns that are generally similar to those of other mammals. Broadly, these results suggest cursoriality is only one of many selective forces driving lagomorph skeletal evolution, with variations in body size and fossoriality potentially having measurable impacts.Ellen M. Martin, Jesse W. Young, Connie D. Fellmann, Brian Kraatz, Emma Sherrat
    corecore