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Abstract

Snakes are a highly successful group of vertebrates, within great diversity in habitat, diet,
and morphology. The unique adaptations for the snake skull for ingesting large prey in more
primitive macrostomatan snakes have been well documented. However, subsequent diver-
sification in snake cranial shape in relation to dietary specializations has rarely been studied
(e.g. piscivory in natricine snakes). Here we examine a large clade of snakes with a broad
spectrum of diet preferences to test if diet preferences are correlated to shape variation in
snake skulls. Specifically, we studied the Xenodontinae snakes, a speciose clade of South
American snakes, which show a broad range of diets including invertebrates, amphibians,
snakes, lizards, and small mammals. We characterized the skull morphology of 19 species
of xenodontine snakes using geometric morphometric techniques, and used phylogenetic
comparative methods to test the association between diet and skull morphology. Using phy-
logenetic partial least squares analysis (PPLS) we show that skull morphology is highly
associated with diet preferences in xenodontine snakes.

Introduction

The origin and diversification of morphology are topics of great interest with the field of evolu-
tionary biology, and the adaptation of organismal form to ecological conditions has been
attributed as a primary driving force of morphological diversification [1]. Classic support for
the hypothesis of adaptation by natural selection is evolutionary convergence. Evolutionary
convergence occurs when similar phenotypes evolve in phylogenetically independent taxa as a
response to similar ecological conditions [2, 3]. Due to the importance of the skull, and its
direct link to an animal’s fitness, it is presumed that skull morphology is under considerably
strong selection pressure [4]. Among the many ecological functions of the skull, feeding is one
of the most essential; and presumably, diet can influence the skull [5, 6]. Many studies within
vertebrates have corroborated this idea, showing strong correlations between diet and skull
morphology [6, 7, 8]. Stayton [9] studied lizard skulls shape evolution across 17 families, using
geometric morphometric tools. He showed morphological convergent evolution among lizards

PLOS ONE | DOI:10.1371/journal.pone.0148375 February 17,2016

1/12


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0148375&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.fapesp.br/
http://www.fapesp.br/

el e
@ ' PLOS ‘ ONE Diet Variation Is Correlated to Morphological Diversification in Xenodontine Snake Skulls Shape

with similar diets. However, these patterns were secondary over the more general phylogenetic
pattern of lizard skull diversity.

Snakes are a highly successful group of vertebrates, with large diversity in habits, environ-
ments, diet, and morphology [10]. They comprise more than 3000 species, widely distributed
across temperate and tropical regions, with diverse dietary preferences [11]. Those historical
shifts probably resulted in adaptive radiations that contributed to the high diversity of species
observed today [12, 13].

Snakes, particularly macrostomatans, can feed on very large prey, much larger that the size
of their heads. Snakes with macrostoman condition possess highly kinetic skulls, which allow
for the transport of the entire prey through their oral cavities using ratcheting motions of the
lower jaws [11, 14, 12, 15]. Genomic phylogenies suggest that this capacity have evolved twice,
in tropidophiids, basal alethinophidians, and the families Bolyeriidae, Tropidophiidae, Boidae,
and Pythonidae, plus the "advanced snakes" that include Acrochordidae and Colubroidea
grouped as Caenophidia [16]. Several studies have suggested association between specific types
of diet and the morphology of snakes [17, 18]. However, to our knowledge, no study has used
geometric morphometric tools and phylogenetic comparative methods to explicitly test the
association between diet and skull morphology in snakes.

Xenodontines are a speciose clade of South American snakes that include 49 genera and
approximately 330 species [19]. Molecular phylogenetic hypotheses corroborate the mono-
phyly of the group [20], and are well known for their great diversity in morphology and eco-
logical features (Fig 1, [21]). In particular, xenodontine snakes show a broad range of diets
including invertebrates, amphibians, lizards, snakes and small mammals [22]; and so are a
good representative of the diet preference diversity found among modern macrostomatan
snakes. The high level of morphological and ecological diversity makes xenodontine snakes an
ideal group to study mechanisms that promote lineage diversification and evolutionary radia-
tions in macrostomatan snakes [21].

Here we describe the variation in skull shape of 19 species of xenodontine snakes using geo-
metric morphometric techniques [23; 24]. Using dietary preferences compiled from the litera-

ture with phylogenetic comparative methods we addressed the following question: is the

Fig 1. Example of morphological variation in Xenodontinae snake skulls. Dorsal view (A) and lateral view (B) of Helicops angulatus UFMT 7818, an
eater of fish, lizards, and anurans; Dorsal view (C) and lateral view (D) of Philodryas aestivus IBSP 6771, an eater of mammals and anurans; Dorsal view (E)
and lateral view (F) of Phimophis guerini IBSP 66406, an eater of lizards and mammals; Dorsal view (G) and lateral view (H) of Phalotris mertensi ZUEC 486,
an eater of elongate vertebrates (caecilians and amphisbaenians).

doi:10.1371/journal.pone.0148375.g001
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variation of skull shape in xenodontine snakes influenced only by the speciation process, or has
the diet fostered the diversification of skull shape?

Material and Methods
Data

We examined skull morphology in 19 species of South American xenodontine snakes (range
1-5 specimens per species, mean of 4), representing the diversity of diet preferences present in
xenodontine snakes. The analyzed specimens were from the following museums: Museu
Nacional, Rio de Janeiro, Brazil (MNR]), Instituto Butantan, Sao Paulo, Brazil (IBSP), Univer-
sidade Federal do Mato Grosso, Cuiab4, Brazil (UFMT), Museu de Zoologia “Prof. Ad4o José
Cardoso”, Unicamp, Campinas, Sdo Paulo, Brazil (ZUEC). The complete list of the analyzed
specimens can be found in the Supporting Information, Table A in S1 File. The skulls were dis-
sected from museum specimens and skeletonized by hand. We obtained digital images of the
skulls in dorsal and lateral views, using a Canon PowerShot S5 SI digital camera. Images were
standardized for skull position, camera lens plane position, and distance between camera lens
and skull.

One of us (JK) digitized a set of 20 landmarks in each view (dorsal and lateral) of the skull
(Fig 2, for landmarks definitions see list on Table B in S1 File) using tpsDig 2.12 [25]. The land-
marks were digitized only on one side of the skull, since our focus was not on the asymmetric
component of shape [26]. The landmark data were aligned using Generalized Procrustes Anal-
ysis [27; 23]. Then the average shape for each species was calculated and used for subsequent
analyses.

Principal Component Analysis was performed on the average shape for all species Procrus-
tes shape coordinates to visualize the variation among species. We obtained 18 principal axes
(PCs) for each view that describes the shape variation. The differences in shape described by
each principal axis (PC) were summarized using thin-plate spline deformation grids [28; 29].
The analyses were performed using Geomorph package v.2.1 [29; 30] for R software v.3.1.1
[31], and tpsRelw 1.46 software [25].

Diet preferences were obtained from literature, and are presented as the proportion of each
item on the diet (Table 1).

Phylogeny and Comparative Approach

The phylogenetic relationships between the xenodontine species were reconstructed using Dip-
sas indica as the outgroup. We used sequences of mitochondrial genes 12S and 16S rDNA, and
nuclear gene Oocyte maturation factor-like (c-mos). All sequences were obtained from Gen-
Bank, and aligned using ClustalW [44] (List of used accession numbers-Table C in S1 File).
jModelTest 0.1 [45] was employed to determine the most appropriate model of sequence evo-
lution for each analyzed gene, estimated under the Bayesian Information Criterion (BIC). The
best fit model for the genes 12S and 16S was TPM3uf + G, and for the gene c-mos was
TPM2uf. The combined molecular data set was analyzed under the Bayesian Inference method,
implementing the selected optimal sequence evolution model for each gene. The phylogenetic
analysis was performed using MrBayes v3.1.2 [46]. Two runs were performed, with default
heating for each of the four chains and sampling every 100 generations for 20,000,000 genera-
tions. The convergence was verified using Tracer v1.4 [47]; and the first 5000 topologies (25%
of the sampled topologies) were discarded as burn-in.

The phylogenetic signal skull shape (the Procrustes shape coordinates) was evaluated using
the multivariate K statistic (see [48]) in the R package Geomorph v.2.1. The K statistic can indi-
cate little or no phylogenetic signal (K << 1), or phylogenetic signal (K ~ 1), or greater than
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Fig 2. Cranial landmarks. Cranial landmarks recorded from South American Xenodontinae snakes. Dorsal
view (A), anatomical wire frame of dorsal view (B), lateral view (C), and anatomical wire frame of lateral view
(D).

doi:10.1371/journal.pone.0148375.g002

the expectation under a Brownian motion random-walk model of evolution (K >> 1). To test
if the data contain a signal of phylogeny (i.e. K > 0), we randomly permuted the order of spe-
cies on the tree 1000 times and recalculated K for each permutation. We then compared the
observed K value to this null distribution to assess significance.

To visualize the evolutionary history of the analyzed of skull shape, the consensus phyloge-
netic tree was projected onto the shape space. We used the squared-change parsimony method
implemented in Morpho] [49], which is equivalent to maximum likelihood methods when
branch lengths are present.

To characterize the evolutionary patterns of covariation between skull shape variation and
diet preferences we used phylogenetic two-block partial least squares analysis (PPLS; [50]).
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Table 1. Proportion of prey items recorded for xenodontinae snakes; an = anuran amphibians; bi = birds; ca = caecilids or amphisbenids;

eg = lizard eggs; ew = earthworms; fi = fishes; li = lizards; ma = mammals; mo = mollusks; sn = snakes.
mo ew fi an ca li sn bi eg ma Other Reference

Apostolepis assimilis 1.00 [32]
Boiruna maculata 0.1 0.58 0.16 0.13 0.03 [33]
Elapomorphus quinquelineatus 0.94 0.06 [34, 45]
Erythrolamprus aesculapii 0.04 0.96 [35]
Gomesophis brasiliensis 1.00 [36]
Helicops angulatus 0.81 0.14 0.05 [37]
Hydrodynastes gigas 0.42 0.54 0.04 [38]
Lystrophis dorbignyi 0.94 0.06 [39]
Oxyrhopus rhombifer 0.49 0.02 0.49 [33]
Phalotris mertensi 1.00 [32]
Philodryas aestiva 0.5 0.5 [32]
Phimophis guerini 0.92 0.08 [33]
Psomophis joberti 0.5 0.5 [38]
Siphlophis pulcher 0.83 0.1 0.07 [32]
Taeniophallus affinis 0.9 0.05 0.05 [37]
Tomodon dorsatus 1.00 [40]
Tropidodryas striaticeps 0.04 0.11 0.01 0.18 0.66 [41]
Uromacer catesbyi 0.31 0.69 [42]
Xenoxybelis argentus 0.52 0.47 [43]

doi:10.1371/journal.pone.0148375.1001

Partial least squares is a statistical procedure that quantifies the degree of covariation between
sets of variables, based on a singular value decomposition of the overall trait covariance matrix
[51]. The phylogenetic PLS uses instead the evolutionary covariance matrix and assumes the
expected lack of independence among samples as a result of phylogenetic relationship [51].
Since our consensus phylogenetic tree shows some polytomies, the PPLS analysis was con-
ducted on 200 resolved trees randomly selected from MrBayes output. The significance of the
model was assessed employing a permutation test. The PPLS was performed in the Geomorph
package v.2.1.

Results

The principal components (PC) analysis of the skull shapes reveals that most of the shape vari-
ation is contained in few dimensions; in the dorsal view the first four PCs explained 91.5%,
while in the lateral view the first four PCs explained 88.3% of the total shape variation.

In the dorsal view, PC1 explained 56.4% of the variation, and the species with negative val-
ues show an increase of skull length, especially of the parietal bone, and a relative decrease in
orbit size; while positive values indicate a wider and shorter skull (Fig 3). On the other hand, in
the lateral view the PC1 explained 54.4% of the variation; positive values of the PC1, on the
right side of the graph, show a more robust and shortened skull, especially the maxilla bone,
while species with negative values of PC1, show a more elongated jaw (Fig 4).

The molecular phylogeny based on Bayesian Inference analysis was generally consistent
with previous phylogenetic hypotheses, we found support for the monophyly of all the xeno-
dontine tribes [19; 20], (Figure A in S1 File). Our phylogeny showed the clade Erythrolamprus
and Lystrophis associated to the clade that contain Siphlophis, Oxyrhopus, Boiruna and Phimo-
phis while Vidal et al. [19] showed Erythrolamprus and Lystrophis as a more inclusive clade sis-
ter group of the clade containing Helicops, Tomodon, Gomesophis, Siphlophis, Oxyrhopus,
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Fig 3. The phylomorphospace of dorsal cranial shape. (A) Projection of the phylogenetic tree into the dorsal view PC morphospace. (B) Estimated
changes in dorsal view shape are shown as deformations from the mean shape along the first and second principal components.

doi:10.1371/journal.pone.0148375.9003

Boiruna and Phimophis. On the other hand, Pyron et al. [20] did not included Elapomorphus
in their analysis. They showed Psomophis as a sister group of the clade formed by Uromacer,
Erythrolamprus, and Lystrophis.

According to the phylogenetic signal metric K, there is significant phylogenetic signal in cra-
nial shape. For the dorsal view, the mean K values from 200 trees is 0.95 (Pyean = 0.005) and
similarly for lateral view, K mean is 0.98 (P ean = 0.003) (see the histogram of K and P values
in S1 Fig). Despite the strong phylogenetic signal results, projecting the consensus phylogenetic
tree into the shape space for each view of the skull demonstrates a striking pattern (Figs 3 and
4). Some sister-taxa are widely separated in shape space, indicating they have very different
morphologies. Species from Elapomorphini tribe are separated from all other species along
PC1 and are more similar to each other in morphology, and share the same diet.
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Fig 4. The phylomorphospace of lateral cranial shape. (A) Projection of the phylogenetic tree into the lateral view PC morphospace. (B) Estimated
changes in lateral view shape are shown as deformations from the mean shape along the first and second principal components.

doi:10.1371/journal.pone.0148375.g004

Xenodontine skull shape is highly correlated with diet. PPLS of dorsal skull shape on diet
across the 200 trees resulted in a mean value of the degree of covariance accessed by permuta-
tion tests of 0.87 (Piean = 0.003), and for lateral skull shape a mean value of the degree of
covariance of 0.84 (Pyean = 0.01) (see the histogram of the values in S2 Fig).

In order to determine whether the species from Elapomorphini tribe (Apostolepis assimilis,
Elapomorphus quinquelineatus, and Phalotris mertensi) were driving the association between
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diet preferences and skull morphology, we repeated the PPLS analyses of both skull views after
excluding these taxa from the consensus tree. The dorsal skull shape resulted in a correlation of
0.80 (P =0.007), and the lateral skull shape a correlation of 0.81 (P = 0.02), thus these results
indicate that this clade has little influence on the overall results.

Discussion

Our results show that skull shape morphology in xenodontine snakes is strongly associated
with diet [52]. Many studies have suggested association between snake skull morphology and
diet in snakes. Maxillary teeth have been associated to different types of diet pronounced poste-
rior ridges located on the posterior maxillary teeth are associated with slug predators [53] long,
sharper teeth and elongated mandible bones are associated with piscivory [53], and enlarged
anterior teeth and arched maxilla are thought to help Lycodon aulicus capucinus to ingest
hard-bodied skinks [54]. Natricine piscivorous snakes were broadly studied, and the results
show that fish-eating snakes have relatively longer skulls than frog-eating snakes, which tended
to have broader skull components [55, 56, 57]. Studies analyzing the diversity of diet prefer-
ences usually focus on a broad scale analysis, for example, Vincent et al. [16] analyzed 12
monophyletic clades across macrostomatan snakes and found that head width is significantly
related to the mean of the consumed prey mass, suggesting that skull in snakes is adapted to
prey size (see also [14; 11]). Only few studies analyzed the evolution of skull morphology and
diet at finer scales, such as the diversity of diet within a family or a genus [33].

Our study is the first to both describe snake skull morphology using geometric morphomet-
ric tools, and to correlate it to a broad spectrum of diet preferences using phylogenetic compar-
ative methods in a highly diverse snake subfamily. However, our results alone are not able to
state that diet drives the diversification of the skull morphology [52]. Our results highlighted a
high correlation between diet and skull shape in xenodontine snakes; however we fail to define
causality. To do so, it would be necessary to future studies of skull functionality and behavior
directly associated to feeding.

The phylogenetic partial least squares analyses showed high correspondence of skull shape
and diet that can be interpreted as an indicative of evolutionary convergence. Morphological
convergence is an excellent opportunity to study adaptation at the macroevolutionary scale,
since it offers multiple independent tests of the morphological response to similar functional
demands [58]. However, as Revell et al. [2] pointed, morphological similarities among taxa could
be a result of several causal processes, including evolutionary convergence, and evolutionary par-
allelism. Evolutionary convergence occurs when lineages with different ancestral morphologies
evolve to the same phenotype through different directions, while in evolutionary parallelism line-
ages with the same ancestral morphology evolve in the same direction toward the same pheno-
type. In other words, parallelism is a special case of convergent evolution where independent
evolutionary lineages evolve the same trait using the same genes and/or developmental pathways,
while convergence occurs when lineages evolve similar traits using different developmental path-
ways. Species that evolve under parallel evolution are likely to share similar patterns of genetic
covariation, and as a result, convergent evolution of a trait may occur not because selection
favored that trait, but because it favored the same correlated trait in each species. As a conse-
quence, natural selection could be favoring a correlated trait, and not the focal one, and any con-
clusion should carefully draw from evolutionary convergence and natural selection [59]. A more
comprehensive sampling of taxa, combined with a robust and well resolved phylogeny of xeno-
dontine snakes, is required to distinguish between these alternative hypotheses.

Vincent et al. [14], based on the analysis of skull size variation across several snakes species,
showed that the increase in head width in snakes is followed by changes in jaw length and
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lower jaw out-lever length, suggesting that the snakes skulls were highly integrated. Skull parts
are integrated because each part tightly associated to the other. Morphological integration can
be a result of developmental, functional, genetic, and/or evolutionary interaction and con-
straints [60]. On the other hand, the skull is also modular, since morphological integration is
not uniform throughout the entire skull, and it can be divided in modules that are strongly
integrated internally, but are relatively independent of other modules [61]. Evolutionary inte-
gration and modularity can be investigated by examining how evolutionary changes in multiple
parts are coordinated across a set of related species, and using comparative methods to take
into account the phylogenetic structure of the variation [60]. Future studies are needed to test
the modularity and integration among snake skull parts to better picture the forces influencing
skull shape evolution.

Supporting Information

S1 Fig. Phylogenetic Signal of skull shape across 200 phylogenetic trees. (A) Lateral cranial
shape Phylogenetic signal values and (B) P values. (C) Dorsal cranial shape Phylogenetic signal
values and (D) P values.

(TTF)

S2 Fig. Phylogenetic Partial Least Squares of skull shape on diet across 200 phylogenetic
trees. (A) Lateral cranial shape correlations values and (B) P values. (C) Dorsal cranial shape
correlations values and (D) P values.

(TIF)

S1 File. List of analyzed material (Table A). Cranial landmarks definitions recorded from
South American Xenodontinae snakes (Table B). Genbank access numbers (Table C).
South American Xenodontinae phylogeny. Bayesian inference phylogeny (mtDNA 125 and
16S, and c-mos) of South American Xenodontinae. Numbers on the branches represent the
posterior probabilities (Figure A).
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