70 research outputs found
A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows
We consider the Saint-Venant system for shallow water flows, with nonflat bottom. It is a hyperbolic system of conservation laws that approximately describes various geophysical flows, such as rivers, coastal areas, and oceans when completed with a Coriolis term, or granular flows when completed with friction. Numerical approximate solutions to this system may be generated using conservative finite volume methods, which are known to properly handle shocks and contact discontinuities. However, in general these schemes are known to be quite inaccurate for near steady states, as the structure of their numerical truncation errors is generally not compatible with exact physical steady state conditions. This difficulty can be overcome by using the so-called well-balanced schemes. We describe a general strategy, based on a local hydrostatic reconstruction, that allows
us to derive a well-balanced scheme from any given numerical flux for the homogeneous problem.
Whenever the initial solver satisfies some classical stability properties, it yields a simple and fast
well-balanced scheme that preserves the nonnegativity of the water height and satisfies a semidiscrete entropy inequality
Dispersive wave runup on non-uniform shores
Historically the finite volume methods have been developed for the numerical
integration of conservation laws. In this study we present some recent results
on the application of such schemes to dispersive PDEs. Namely, we solve
numerically a representative of Boussinesq type equations in view of important
applications to the coastal hydrodynamics. Numerical results of the runup of a
moderate wave onto a non-uniform beach are presented along with great lines of
the employed numerical method (see D. Dutykh et al. (2011) for more details).Comment: 8 pages, 6 figures, 18 references. This preprint is submitted to
FVCA6 conference proceedings. Other author papers can be downloaded at
http://www.lama.univ-savoie.fr/~dutykh
Numerical simulation of strongly nonlinear and dispersive waves using a Green-Naghdi model
We investigate here the ability of a Green-Naghdi model to reproduce strongly
nonlinear and dispersive wave propagation. We test in particular the behavior
of the new hybrid finite-volume and finite-difference splitting approach
recently developed by the authors and collaborators on the challenging
benchmark of waves propagating over a submerged bar. Such a configuration
requires a model with very good dispersive properties, because of the
high-order harmonics generated by topography-induced nonlinear interactions. We
thus depart from the aforementioned work and choose to use a new Green-Naghdi
system with improved frequency dispersion characteristics. The absence of dry
areas also allows us to improve the treatment of the hyperbolic part of the
equations. This leads to very satisfying results for the demanding benchmarks
under consideration
Numerical approximation of the shallow water equations with coriolis source term
We investigate in this work a class of numerical schemes dedicated to the non-linear Shallow Water equations with topography and Coriolis force. The proposed algorithms rely on Finite Volume approximations formulated on collocated and staggered meshes, involving appropriate diffusion terms in the numerical fluxes, expressed as discrete versions of the linear geostrophic balance. It follows that, contrary to standard Finite-Volume approaches, the linear versions of the proposed schemes provide a relevant approximation of the geostrophic equilibrium. We also show that the resulting methods ensure semi-discrete energy estimates. Numerical experiments exhibit the efficiency of the approach in the presence of Coriolis force close to the geostrophic balance, especially at low Froude number regimes
Comparison of models for the simulation of landslide generated Tsunamis
In this paper, we analyze the relevance of the use of the shallow water model and the Boussinesq model to simulate tsunamis generated by a landslide. In a first part, we determine if the two models are able to reproduce waves generated by a landslide. Each model has drawbacks but it seems that it is possible to use them together to improve the simulations. In a second part we try to recover the landslide displacement from the generated wave. This problem is formulated as a minimization problem and we limit the number of parameters to determine assuming that the bottom can be well described by an empirical law
A theory of -dissipative solvers for scalar conservation laws with discontinuous flux
We propose a general framework for the study of contractive semigroups
of solutions to conservation laws with discontinuous flux. Developing the ideas
of a number of preceding works we claim that the whole admissibility issue is
reduced to the selection of a family of "elementary solutions", which are
certain piecewise constant stationary weak solutions. We refer to such a family
as a "germ". It is well known that (CL) admits many different contractive
semigroups, some of which reflects different physical applications. We revisit
a number of the existing admissibility (or entropy) conditions and identify the
germs that underly these conditions. We devote specific attention to the
anishing viscosity" germ, which is a way to express the "-condition" of
Diehl. For any given germ, we formulate "germ-based" admissibility conditions
in the form of a trace condition on the flux discontinuity line (in the
spirit of Vol'pert) and in the form of a family of global entropy inequalities
(following Kruzhkov and Carrillo). We characterize those germs that lead to the
-contraction property for the associated admissible solutions. Our
approach offers a streamlined and unifying perspective on many of the known
entropy conditions, making it possible to recover earlier uniqueness results
under weaker conditions than before, and to provide new results for other less
studied problems. Several strategies for proving the existence of admissible
solutions are discussed, and existence results are given for fluxes satisfying
some additional conditions. These are based on convergence results either for
the vanishing viscosity method (with standard viscosity or with specific
viscosities "adapted" to the choice of a germ), or for specific germ-adapted
finite volume schemes
the WAF method for non-homogeneous SWE with pollutant
This paper deals with the extension of the WAF method to discretize Shallow Water Equations with pollutants. We consider two different versions of the WAF method, by approximating the intermediate waves using the flux of HLL or the direct approach of HLLC solver. It is seen that both versions can be written under the same form with different definitions for the approximation of the velocity waves. We also propose an extension of the method to non-homogeneous systems. In the case of homogeneous systems it is seen that we can rewrite the third component of the numerical flux in terms of an intermediate wave speed approximation. We conclude that – in order to have the same relation for non-homogeneous systems – the approximation of the intermediate wave speed must be modified. The proposed extension of the WAF method preserves all stationary solutions, up to second order accuracy, and water at rest in an exact way, even with arbitrary pollutant concentration. Finally, we perform several numerical tests, by comparing it with HLLC solver, reference solutions and analytical solutions
- …