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EMMANUEL AUDUSSE† , FRANÇOIS BOUCHUT‡ , MARIE-ODILE BRISTEAU† ,

RUPERT KLEIN§ , AND BENOÎT PERTHAME†‡
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Abstract. We consider the Saint-Venant system for shallow water flows, with nonflat bottom. It
is a hyperbolic system of conservation laws that approximately describes various geophysical flows,
such as rivers, coastal areas, and oceans when completed with a Coriolis term, or granular flows
when completed with friction. Numerical approximate solutions to this system may be generated
using conservative finite volume methods, which are known to properly handle shocks and contact
discontinuities. However, in general these schemes are known to be quite inaccurate for near steady
states, as the structure of their numerical truncation errors is generally not compatible with exact
physical steady state conditions. This difficulty can be overcome by using the so-called well-balanced
schemes. We describe a general strategy, based on a local hydrostatic reconstruction, that allows
us to derive a well-balanced scheme from any given numerical flux for the homogeneous problem.
Whenever the initial solver satisfies some classical stability properties, it yields a simple and fast
well-balanced scheme that preserves the nonnegativity of the water height and satisfies a semidiscrete
entropy inequality.
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1. Introduction. The classical Saint-Venant system for shallow water has been
widely validated. It assumes a slowly varying topography z(x) (x denotes a coordinate
in the horizontal direction) and describes the height of water h(t, x) and the water
velocity u(t, x) in the direction parallel to the bottom. It uses the following equations
in one space dimension:

{
∂th + ∂x(hu) = 0,
∂t(hu) + ∂x(hu2 + gh2/2) = −hgzx,

(1.1)

where g > 0 denotes the gravity constant. For future reference we denote the flux
by F (U) = (hu, hu2 + gh2/2), with U = (h, hu). This model is very robust, being
hyperbolic and admitting an entropy inequality (related to the physical energy)

∂t η̃(U, z) + ∂x G̃(U, z) ≤ 0,(1.2)

∗Received by the editors July 4, 2003; accepted for publication (in revised form) Octo-
ber 30, 2003; published electronically June 25, 2004. This work was partially supported by
the ACI Modélisation de processus hydrauliques à surface libre en présence de singularités
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where

η(U) = hu2/2 +
g

2
h2, G(U) =

(
hu2/2 + gh2

)
u,

η̃(U, z) = η(U) + hgz, G̃(U, z) = G(U) + hgzu.
(1.3)

Another nice property is that it preserves the steady state of a lake at rest:

h + z = Cst, u = 0.(1.4)

When solving (1.1) numerically, it is very important to be able to preserve these
steady states at the discrete level and to accurately compute the evolution of small
deviations from them, because the majority of real-life applications resides in this flow
regime. Other steady states with nonvanishing velocity can also be considered, but
we shall not do so in the present work.

Since the early works of LeRoux and coauthors [14], [16], schemes satisfying such
a property have been called well-balanced. Several schemes have been proposed that
satisfy this property (exactly or at least at second-order) [24], [18], [13], [11], [32],
[31], [3]. But the difficulty is then to get schemes that also satisfy very natural prop-
erties, such as conservativity of the water height h, nonnegativity of h, to compute
dry states h = 0 and transcritical flows when the Jacobian matrix F ′ of the flux func-
tion becomes singular (this difficulty is related to resonance, and theoretical studies
can be found, for instance, in [25], [17]), and eventually to satisfy a discrete entropy
inequality. This last property ensures the admissibility of shocks and gives overall the
nonlinear stability of the scheme. Theoretically, the exact Godunov scheme satisfies
these requirements [21], but it is in practice computationally too expensive, and not
easily adaptable to more complex systems, such as, for example, the models proposed
in [9]. The first attempt to derive an approximate solver satisfying all the require-
ments was performed in [4] for a scalar equation (in this case, only the ability to
treat transcritical flows with an entropy inequality is meaningful, together with the
well-balanced property). A generalization to the case of the Saint-Venant system was
obtained in [28], and another method by relaxation is also proposed in [7]. However,
these approximate solver methods are still quite heavy in practice. The aim of this pa-
per is to explain how it is possible, by a very flexible approach involving a hydrostatic
reconstruction, to obtain a well-balanced scheme satisfying all the above requirements,
and which is computationally inexpensive. The present approach unifies and general-
izes ideas developed independently in [5], [6] for nearly hydrostatic, multidimensional
compressible flow, and in [1] for the Saint-Venant shallow water model. In contrast
with the above-mentioned methods [28], [7], it is generic in the sense that it can be
used in conjunction with any given numerical flux for the homogeneous (i.e., with
constant topography) Saint-Venant problem.

2. Well-balanced scheme with hydrostatic reconstruction.

2.1. Semidiscrete scheme. Finite volume schemes for hyperbolic systems con-
sist in using an upwinding of the fluxes. In the semidiscrete case they provide a discrete
version of (1.1) under the form

∆xi
d

dt
Ui(t) + Fi+1/2 − Fi−1/2 = Si,(2.1)

where ∆xi denotes a possibly variable mesh size ∆xi = xi+1/2 − xi−1/2, and the
cell-centered vector of discrete unknowns is

Ui(t) =

(
hi(t)

hi(t)ui(t)

)
.(2.2)
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In a basic first-order accurate scheme, the fluxes are classically computed as Fi+1/2 =
F(Ui(t), Ui+1(t)) with a numerical flux F that is computed via an approximate res-
olution of the Riemann problem (a so-called solver), which provides stability of the
method. We refer to [12] for descriptions of the most well-known solvers: Godunov,
Roe, Kinetic, etc. It is known since [14], [16] that cell-centered evaluations of the
source term in (2.1) will generally not be able to maintain in time steady states of a
lake at rest, which are characterized by

hi + zi = Cst, ui = 0.(2.3)

Following [1], [5], [6], we propose and analyze finite volume schemes according to
(2.1) with flux functions

Fi+1/2 = F(Ui+1/2−, Ui+1/2+),(2.4)

where the interface values Ui+1/2−, Ui+1/2+ are derived from a local hydrostatic re-
construction to be described shortly, which is similar to second-order reconstructions
in higher-order methods. The source term is discretized as

Si =

(
0

g
2h

2
i+1/2− − g

2h
2
i−1/2+

)
.(2.5)

This ansatz is motivated by a balancing requirement, as follows. For nearly hydro-
static flows one has u �

√
gh. In the associated asymptotic limit the leading order

water height h adjusts so as to satisfy the balance of momentum flux and momentum
source terms, i.e.,

∂x

(
gh2

2

)
= −h gzx .(2.6)

Integrating over, say, the ith grid cell we obtain an approximation to the net source
term as

−
xi+1/2∫

xi−1/2

h gzx dx =
g

2
h2
i+1/2− − g

2
h2
i−1/2+ .(2.7)

Thus we are able to locally represent the cell-averaged source term as the discrete
gradient of the hydrostatic momentum flux, and this motivates the source term dis-
cretization in (2.5).

It is obvious now that any hydrostatic state is maintained exactly if, for such
a state, the momentum fluxes in (2.1) and the locally reconstructed heights satisfy
Fhu
i+1/2 = 1

2gh
2
i+1/2− = 1

2gh
2
i+1/2+. This is the motivation for (2.4), which gives this

property if, for hydrostatic states, we have Ui+1/2− = Ui+1/2+ = (hi+1/2−, 0) =
(hi+1/2+, 0).

The hydrostatic balance in (2.6) is equivalent to the “lake at rest” equation (1.4),
so that the reconstruction of the leading order heights is straightforward:

hi+1/2− = hi + zi − zi+1/2, hi+1/2+ = hi+1 + zi+1 − zi+1/2.(2.8)

An important challenge is to design a scheme that robustly captures dry regions where
h ≡ 0. In order to ensure nonnegativity of the water height even when cells begin to
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“dry out,” we need first to perform a truncation of the leading order heights in (2.8),
hi+1/2± = max(0, hi+1/2±). Next, the evaluation of the cell interface height zi+1/2

has to be done in a quite subtle way. Our construction, combined with a centered
value of zi+1/2, is not stable. We rather take an upwind evaluation of the form

zi+1/2 = max(zi, zi+1).(2.9)

With these choices, we ensure that 0 ≤ hi+1/2− ≤ hi and 0 ≤ hi+1/2+ ≤ hi+1, and we
prove below that this property ensures the nonnegativity requirement.

With these rules in place we can now summarize our first-order well-balanced
finite volume scheme by

∆xi
d

dt
Ui(t) + Fi+1/2 − Fi−1/2 = Si,(2.10)

where

Fi+1/2 = F(Ui+1/2−, Ui+1/2+),(2.11)

Ui+1/2− =

(
hi+1/2−

hi+1/2− ui

)
, Ui+1/2+ =

(
hi+1/2+

hi+1/2+ ui+1

)
,(2.12)

hi+1/2− = max(0, hi + zi − zi+1/2), hi+1/2+ = max(0, hi+1 + zi+1 − zi+1/2),
(2.13)

and

Si = Si+1/2− + Si−1/2+ ≡
(

0
g
2h

2
i+1/2− − g

2h
2
i

)
+

(
0

g
2h

2
i − g

2h
2
i−1/2+

)
.(2.14)

The latter expression for the source is equivalent to the earlier (2.5); it shows that
the source may be considered as being distributed to the cell interfaces. With this
reinterpretation in mind, we may also rewrite the scheme as

∆xi
d

dt
Ui(t) + Fl(Ui, Ui+1, zi, zi+1) −Fr(Ui−1, Ui, zi−1, zi) = 0,(2.15)

with left and right numerical fluxes,

Fl(Ui, Ui+1, zi, zi+1) = Fi+1/2 − Si+1/2−

= F(Ui+1/2−, Ui+1/2+) +

(
0

g
2h

2
i − g

2h
2
i+1/2−

)
,

Fr(Ui, Ui+1, zi, zi+1) = Fi+1/2 + Si+1/2+

= F(Ui+1/2−, Ui+1/2+) +

(
0

g
2h

2
i+1 − g

2h
2
i+1/2+

)
.

(2.16)

Our construction is reminiscent of the formulas proposed in [16], [14], [13] using the
full steady state equations to compute intermediate states at which the numerical flux
is evaluated. The difference is that here, (2.12), (2.13) mean that we try to impose
interface values satisfying some modified steady equations hi+1/2− + zi+1/2 = hi + zi,
ui+1/2− = ui, hi+1/2+ + zi+1/2 = hi+1 + zi+1, ui+1/2+ = ui+1, i.e., h + z = cst,
u = cst instead of Bernoulli’s law u2/2 + g(h + z) = cst, hu = cst. The advantage of
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these new relations is that now we have no singularity at critical points (observe that
the numerical fluxes Fl, Fr depend continuously on the data), while these relations
coincide with the exact ones in the case of interest: u = 0 corresponding to (2.3).
Strikingly, this modification does not affect the consistency of the scheme, even in far
from steady situations.

Theorem 2.1. Consider a consistent numerical flux F for the homogeneous
problem that preserves nonnegativity of hi(t) and satisfies an in-cell entropy inequality
corresponding to the entropy η in (1.3). Then the finite volume scheme (2.9)–(2.14)

(i) preserves the nonnegativity of hi(t);
(ii) is well-balanced, i.e., preserves the steady state of a lake at rest (2.3);
(iii) is consistent with the Saint-Venant system (1.1);
(iv) satisfies an in-cell entropy inequality associated to the entropy η̃ in (1.3),

∆xi
d

dt
η̃(Ui(t), zi) + G̃i+1/2 − G̃i−1/2 ≤ 0.(2.17)

Proof. (i) The statement that F preserves the nonnegativity of hi(t) means ex-
actly that Fh(hi = 0, ui, hi+1, ui+1) −Fh(hi−1, ui−1, hi = 0, ui) ≤ 0 for all choices of
the other arguments. Since the sources in (2.14) have no contribution to the first com-
ponent, hi(t) in our scheme satisfies a conservative equation with flux Fh(Ui+1/2−,

Ui+1/2+). Therefore we need to check that Fh(Ui+1/2−, Ui+1/2+) − Fh(Ui−1/2−,
Ui−1/2+) ≤ 0 whenever hi = 0. As mentioned above, our construction (2.9), (2.13)
ensures that hi+1/2− ≤ hi and hi+1/2+ ≤ hi+1, and thus hi+1/2− = hi−1/2+ = 0 when
hi = 0, and this gives (i).

(ii) On a steady state of a lake at rest, we have hi+1/2− = hi+1/2+, ui+1 = ui = 0,
and thus Ui+1/2− = Ui+1/2+ and by consistency of F

Fi+1/2 = F (Ui+1/2−) = F (Ui+1/2+) =

(
0

g
2h

2
i+1/2−

)
=

(
0

g
2h

2
i+1/2+

)
.(2.18)

Together with the expression of the source terms in (2.14), we get Fl = Fi+1/2 −
Si+1/2− = F (Ui), Fr = Fi+1/2 + Si+1/2+ = F (Ui+1), and this proves (ii).

(iii) To prove (iii), we apply the criterion in [29], [7], and we need to check two
properties related to the consistency with the exact flux F and the consistency with the
source. The consistency with the exact flux Fl(U,U, z, z) = Fr(U,U, z, z) = F (U) is
obvious since Ui+1/2− = Ui and Ui+1/2+ = Ui+1 whenever zi+1 = zi. For consistency
with the source, the criterion becomes for the Saint-Venant system

Fhu
r (Ui, Ui+1, zi, zi+1) −Fhu

l (Ui, Ui+1, zi, zi+1) = −hg∆zi+1/2 + o(∆zi+1/2),(2.19)

as Ui, Ui+1 → U and ∆zi+1/2 → 0, where ∆zi+1/2 = zi+1 − zi. In our case,

Fr −Fl = Si+1/2− + Si+1/2+ =

(
0

g
2h

2
i+1/2− − g

2h
2
i + g

2h
2
i+1 − g

2h
2
i+1/2+

)
.(2.20)

Now, assuming h > 0, the maxima in (2.13) play no role if hi−h, hi+1−h, and ∆zi+1/2

are small enough. Thus we have h2
i+1/2−/2 − h2

i /2 = h(zi − zi+1/2) + o(∆zi+1/2),

h2
i+1/2+/2−h2

i+1/2 = h(zi+1−zi+1/2)+o(∆zi+1/2), which gives (2.19). In the special

case h = 0, the maxima in (2.13) can play a role only when hi = O(∆zi+1/2), and we
conclude that (2.19) always holds, proving (iii).
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(iv) In order to prove (iv), we first write that the original numerical flux F
satisfies a semidiscrete entropy inequality. According to [7], this means that we can
find a numerical entropy flux G such that

G(Ui+1) + η′(Ui+1)(F(Ui, Ui+1) − F (Ui+1))
≤ G(Ui, Ui+1) ≤ G(Ui) + η′(Ui)(F(Ui, Ui+1) − F (Ui)),

(2.21)

where η′ is the derivative of η with respect to U = (h, hu), η′(U) = (gh−u2/2, u). Sim-

ilarly, having an entropy inequality (2.17) for (1.1) with G̃i+1/2 = G̃(Ui, Ui+1, zi, zi+1)

is equivalent to finding some numerical entropy flux G̃ such that

G̃(Ui+1, zi+1) + η̃′(Ui+1, zi+1)(Fr(Ui, Ui+1, zi, zi+1) − F (Ui+1))

≤ G̃(Ui, Ui+1, zi, zi+1) ≤ G̃(Ui, zi) + η̃′(Ui, zi)(Fl(Ui, Ui+1, zi, zi+1) − F (Ui)).

(2.22)

Let us prove that (2.22) holds with

G̃(Ui, Ui+1, zi, zi+1) = G(Ui+1/2−, Ui+1/2+) + Fh(Ui+1/2−, Ui+1/2+)gzi+1/2.(2.23)

Since both inequalities are obtained by the same type of estimates, let us prove only
the upper inequality involving Fl in (2.22). By comparison to (2.21), it is enough to
prove that

G(Ui+1/2−) + η′(Ui+1/2−)
(
F(Ui+1/2−, Ui+1/2+) − F (Ui+1/2−)

)
+ Fh(Ui+1/2−, Ui+1/2+)gzi+1/2

≤ G(Ui) + η′(Ui)(Fl − F (Ui)) + Fh(Ui+1/2−, Ui+1/2+)gzi.

(2.24)

This inequality can be written, by denoting F = (Fh,Fhu) = F(Ui+1/2−, Ui+1/2+),
as

(u2
i /2 + ghi+1/2−)hi+1/2−ui + (ghi+1/2− − u2

i /2)(Fh − hi+1/2−ui)

+ui(Fhu − hi+1/2−u
2
i − gh2

i+1/2−/2) + Fhg(zi+1/2 − zi)

≤ (u2
i /2 + ghi)hiui + (ghi − u2

i /2)(Fh − hiui) + ui(Fhu
l − hiu

2
i − gh2

i /2),

(2.25)

or, after simplification,

ui(Fhu − gh2
i+1/2−/2) + Fhg(hi+1/2− − hi + zi+1/2 − zi) ≤ ui(Fhu

l − gh2
i /2).

(2.26)

Since Fhu
l − gh2

i /2 = Fhu − gh2
i+1/2−/2 by definition of Fl in (2.16), our inequality

finally reduces to

Fh(Ui+1/2−, Ui+1/2+)(hi+1/2− − hi + zi+1/2 − zi) ≤ 0.(2.27)

Now, according to (2.13), when this quantity is nonzero, we have hi+1/2− = 0 and the
expression between parentheses is nonnegative. But since F preserves nonnegativity,
we have Fh(hi+1/2− = 0, ui, hi+1/2+, ui+1) ≤ 0, and we conclude that (2.27) always
holds. This completes the proof of (iv).
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2.2. Fully discrete scheme and CFL condition. When using the time-space
fully discrete scheme

Un+1
i − Un

i +
∆t

∆xi

(
Fl(Ui, Ui+1, zi, zi+1) −Fr(Ui−1, Ui, zi−1, zi)

)
= 0,(2.28)

the consistency and the well-balanced property are of course still valid. The question
is then to obtain a CFL condition that guarantees stability.

One can prove that our hydrostatic reconstruction scheme does not satisfy a fully
discrete entropy inequality. Indeed there exist some data with hi + zi = cst, ui =
cst �= 0 such that for any ∆t > 0, the fully discrete entropy inequality η̃(Un+1

i , zi) −
η̃(Un

i , zi) + ∆t
∆xi

(G̃i+1/2 − G̃i−1/2) ≤ 0 is violated. However, these data are not pre-
served by the scheme. The consequence is that in practice we do not observe insta-
bilities as long as the water height hi remains nonnegative.

In order to preserve the nonnegativity of hi, the CFL condition that needs to be
used is not more restrictive than that of the homogeneous solver.

Proposition 2.2. Assume that the homogeneous flux F preserves the nonneg-
ativity of h by interface with a numerical speed σ(Ui, Ui+1) ≥ 0, which means that
whenever the CFL condition

σ(Ui, Ui+1)∆t ≤ min(∆xi,∆xi+1)(2.29)

holds, we have

hi −
∆t

∆xi
(Fh(Ui, Ui+1) − hiui) ≥ 0,

hi+1 −
∆t

∆xi+1
(hi+1ui+1 −Fh(Ui, Ui+1)) ≥ 0.

(2.30)

Then the fully discrete hydrostatic reconstruction scheme (2.28) also preserves the
nonnegativity of h by interface,

hi −
∆t

∆xi
(Fh(Ui+1/2−, Ui+1/2+) − hiui) ≥ 0,

hi+1 −
∆t

∆xi+1
(hi+1ui+1 −Fh(Ui+1/2−, Ui+1/2+)) ≥ 0,

(2.31)

under the CFL condition

σ(Ui+1/2−, Ui+1/2+)∆t ≤ min(∆xi,∆xi+1).(2.32)

Proof. Under the CFL condition (2.32), we have

hi+1/2− − ∆t

∆xi
(Fh(Ui+1/2−, Ui+1/2+) − hi+1/2−ui+1/2−) ≥ 0,

hi+1/2+ − ∆t

∆xi+1
(hi+1/2+ui+1/2+ −Fh(Ui+1/2−, Ui+1/2+)) ≥ 0.

(2.33)

As previously mentioned, with the choice (2.9), (2.13), we have hi+1/2− ≤ hi and
hi+1/2+ ≤ hi+1. Thus we deduce that (2.31) holds as soon as 1 + ui∆t/∆xi ≥ 0 and
1 − ui+1∆t/∆xi+1 ≥ 0, which is necessarily the case from (2.32).
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3. Second-order extension. Starting from a given first-order method, a com-
mon way to obtain a second-order extension is, as was already mentioned for the
analogy with our hydrostatic reconstruction, to compute the fluxes from limited re-
constructed values on both sides of each interface rather than cell-centered values; see
[12], [23], or [30]. These new values are classically obtained with three ingredients:
prediction of the gradients in each cell, linear extrapolation, and limitation procedure.

In the presence of a source and in the context of well-balanced schemes, this
approach needs to be described in more detail. In particular, according to [20], [19],
[7], since not only the reconstructed values Ui,r at i + 1/2− and Ui+1,l at i + 1/2+
need to be defined but also zi,r, zi+1,l, a cell-centered source term Sci must by added
to preserve the consistency. We remark that even if zi do not depend on time, the
reconstructed values zi,l, zi,r could depend on time via a coupling with Ui in the
reconstruction step. Once these second-order reconstructed values are known, we
apply the hydrostatic reconstruction scheme exposed in the previous section at each
interface. This gives the second-order well-balanced scheme

∆xi
d

dt
Ui(t) + Fi+1/2 − Fi−1/2 = Si + Sci,(3.1)

where

Fi+1/2 = F(Ui+1/2−, Ui+1/2+),(3.2)

Ui+1/2− =

(
hi+1/2−

hi+1/2− ui,r

)
, Ui+1/2+ =

(
hi+1/2+

hi+1/2+ ui+1,l

)
,(3.3)

and the hydrostatic reconstruction is now

hi+1/2− = max(0, hi,r + zi,r − zi+1/2), hi+1/2+ = max(0, hi+1,l + zi+1,l − zi+1/2),
(3.4)

with

zi+1/2 = max(zi,r, zi+1,l).(3.5)

The source term is distributed as before at the interfaces,

Si = Si+1/2− + Si−1/2+,(3.6)

Si+1/2− =

(
0

g
2h

2
i+1/2− − g

2h
2
i,r

)
, Si−1/2+ =

(
0

g
2h

2
i,l −

g
2h

2
i−1/2+

)
.(3.7)

A simple well-balanced choice for the centered source term Sci is

Sci =

(
0

g
hi,l+hi,r

2 (zi,l − zi,r)

)
.(3.8)

Using the definitions of the left and right numerical fluxes Fl, Fr in (2.16), a compact
formulation of the scheme is

∆xi
d

dt
Ui(t) + Fl(Ui,r, Ui+1,l, zi,r, zi+1,l) −Fr(Ui−1,r, Ui,l, zi−1,r, zi,l) = Sci.(3.9)
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This formulation ensures that the second-order scheme inherits the stability properties
of the first-order one.

Theorem 3.1. Consider a consistent numerical flux F for the homogeneous prob-
lem that preserves nonnegativity of hi(t). Assume that the second-order reconstruction
gives nonnegative values hi,l, hi,r, is well-balanced, and is second-order-centered in z,
which means by definition that whenever the sequences (Ui) and (zi) are the cell av-
erages of smooth functions U(x), z(x), we have

zi+1,l − zi,r = O
(
(∆xi + ∆xi+1)

3
)
,

zi,r − zi,l
∆xi

= zx(xi) + O
(
(∆xi−1 + ∆xi + ∆xi+1)

2
)
.

(3.10)

Then the finite volume scheme (3.1)–(3.8) preserves the nonnegativity of hi(t), is well-
balanced, i.e., preserves the steady states of a lake at rest (2.3), and is second-order
accurate.

Proof. It is well known that the second-order reconstruction strategy preserves
the nonnegativity of the water height (under a half CFL condition in the fully discrete
case). Here only the centered source term Sci in (3.9) could cause difficulties, but it
does not since its first component vanishes.

The preservation of the lake-at-rest steady states can be checked easily from the
property of the second-order reconstruction to be well-balanced, which means by
definition that if ui = 0 and hi + zi = hi+1 + zi+1 for all i, then ui,l = ui,r = 0 and
hi,l + zi,l = hi,r + zi,r = hi + zi for all i. Indeed we just have to notice that for a
steady state, Sci = (0, g(h2

i,r − h2
i,l)/2).

In order to prove the second-order accuracy, let us assume that (Ui) and (zi) are
realized as the cell averages of smooth functions U(x) and z(x), and denote by � the
mesh size. Then, since we assumed implicitly that the second-order reconstruction is
second-order, we have that Ui,r = U(xi+1/2) + O(�2), Ui+1,l = U(xi+1/2) + O(�2),
zi,r = z(xi+1/2) + O(�2), zi+1,l = z(xi+1/2) + O(�2). It follows from (3.3)–(3.5) that
Ui+1/2± = U(xi+1/2) + O(�2), and thus by (3.2) Fi+1/2 = F (U(xi+1/2)) + O(�2).
This proves the second-order accuracy in the weak sense of the flux difference in
(3.1) since this part is in conservative form. For the right-hand side, there is no
such cancellation, and thus we can only allow errors in O(∆xi�

2) in (3.1). We have
(hi,l+hi,r)/2 = h(xi)+O(�2), and the second expansion in (3.10) yields with (3.8) that
Sci =

(
0,−gh(xi)zx(xi)∆xi + O(∆xi�

2)
)

=
∫ xi+1/2

xi−1/2
(0,−gh(x)zx(x)) dx + O(∆xi�

2).

Since Si+1/2± = O(zi+1,l − zi,r) = O(�3) by the first expansion in (3.10), this gives
that Si = O(�3) and concludes the proof in the “regular” case when � = O(∆xi) by
just considering Si as an error in (3.1). In the general case, we have to introduce a
slightly different interpretation of the scheme via a weighted average flux

F̃i+1/2 =
∆xi+1Fl + ∆xiFr

∆xi + ∆xi+1
= Fi+1/2 +

∆xiSi+1/2+ − ∆xi+1Si+1/2−
∆xi + ∆xi+1

.(3.11)

By the first line in (3.10), we have F̃i+1/2 = Fi+1/2 − Si+1/2− + O(∆xi�
2) and also

F̃i+1/2 = Fi+1/2 + Si+1/2+ + O(∆xi+1�
2). Therefore,

F̃i+1/2 − F̃i−1/2 = Fi+1/2 − Fi−1/2 − Si+1/2− − Si−1/2+ + O(∆xi�
2)

= Fi+1/2 − Fi−1/2 − Si + O(∆xi�
2),

(3.12)

and (3.1) can be rewritten as

∆xi
d

dt
Ui(t) + F̃i+1/2 − F̃i−1/2 = Sci + O(∆xi�

2),(3.13)
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which proves the second-order accuracy.
Some important features arising in the second-order reconstruction must now

be specified. First, the cell-by-cell reconstruction preserves the mass conservation
property of the finite volume method. Second, the limitation procedure ensures the
nonnegativity of the second-order reconstructed water heights. The third important
point is that the second-order reconstruction has to preserve the lake-at-rest steady
state. To ensure this property we reconstruct also the bottom topography z(x) al-
though it is a data. The idea to do so is not so new (see [22], [11]), but here we
give details on the more stable way to do it. Indeed only two of the three quantities
h, z, h+z need be explicitly reconstructed, the last being necessarily a combination of
the other two. A critical test for making the right choice is given by considering a lake
at rest with nonvertical shores, that is, considering only an interface between a wet
cell and a dry cell in the case where the bottom of the dry cell is higher than the free
surface in the wet cell and where the fluid is at rest in the wet cell. As it appears in
Figure 1, for the minmod reconstruction, the only choice which preserves the steady
state and the nonnegativity of the water height at a wet-dry interface is to work with
the quantities h and h + z. Notice that it follows that in some respect the bottom
topography changes at each timestep. This choice is consistent with the strategy for
second-order extensions of a well-balanced Godunov-type scheme to multidimensional
compressible flow under gravity in [5], [6] in that the deviations from the nonconstant
steady state form the basis for reconstruction and slope limiting (even if this rule does
not exclude the worst choice in the context of a wet-dry interface, namely, to recon-
struct z and h + z). It is obvious then that the chosen second-order reconstruction
preserves also the steady state in the classical case of wet-wet interfaces since we ex-
plicitly reconstruct the quantity h+z. The second-order-centered condition (3.10) can
be realized, for example, with a second-order ENO reconstruction, but in practice we
shall not do so because it becomes too complicate for two-dimensional unstructured
meshes, even if it necessarily means a slight loss of accuracy. Second-order accuracy
in time can be obtained as usual by a convex two-step integration of (3.9), and the
CFL condition need not be modified.

4. Numerical results. All numerical tests are performed with a kinetic solver
for the homogeneous problem. This solver is based on the kinetic theory developed
in [27] and has the advantage of keeping the water height nonnegative, of verifying a
discrete in-cell entropy inequality, and of being able to compute problems with shocks
or vacuum. First- and second-order in space computations are proposed, but only
first-order in time is used.

4.1. One-dimensional assessments. We first illustrate that the hydrostatic
reconstruction does not affect the robustness of the homogeneous solver. We present
a very classical numerical test of a constant discharge transcritical flow with shock
over a bump; see [15] for a complete presentation. In Figures 2 and 3, where 101 points
are used, we observe good first- and second-order results for this test, the stiffness
of which is well known. As we are far from a hydrostatic steady state, the results
of the well-balanced and standard schemes are quite similar. Notice, however, that
the well-balanced version is less affected—regardless of the order of resolution—than
the standard scheme where the derivative of the bottom topography presents strong
variations.

To exhibit the improvement due to the hydrostatic reconstruction we present now
a quasi-stationary case first proposed by LeVeque in [24] which consists in comput-
ing small perturbations of the steady state of a lake at rest with a varying bottom
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xixi−1

xi+1/2

xi+1

xi−1/2

First-order solution

Reconstructed quantities: z and h + z Reconstructed quantities: z and h

Reconstructed quantities: h and h + z

Fig. 1. Second-order reconstruction strategy. Free surface (dotted line). Bottom topography
(continuous line).

topography:

z(x) = (0.25 (cos (π(x− 1.5)/0.1) + 1))+ ,

h(0, x) = 1. + 0.0011l1.1≤x≤1.2.

As we can see by considering linearized equations, the small perturbation simply
moves to the right with a speed equal to

√
h(t, x), i.e.,

√
1 − z(x) at first-order

approximation (gravity is equal to 1). We present in Figure 4 the results obtained at
t = 0.7s and with 150 points, with the well-balanced scheme on the right, and with
the standard one on the left. Notice that the scale is not the same on both graphs.
It appears that even for the second-order computation the unphysical perturbations
induced by the standard scheme are larger than the initial perturbation of the free
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Fig. 2. Constant discharge problem with shock: discharge and water height. First-order stan-
dard scheme (times crosses). First-order well-balanced scheme (plus crosses). Exact solution and
bottom topography (solid and dotted lines).
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Fig. 3. Constant discharge problem with shock: discharge and water height. Second-order
standard scheme (times crosses). Second-order well-balanced scheme (plus crosses). Exact solution
and bottom topography (solid and dotted lines).
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Fig. 4. Quasi-stationary problem with small perturbation. First-order scheme (times crosses).
Second-order scheme (plus crosses).

surface. Moreover, the standard scheme induces not only a perturbation of the bump,
but also a perturbation which moves to the right at the same speed as the initial
perturbation, but which is more than one order of magnitude greater than the initial
perturbation. On the contrary, the results obtained with the well-balanced scheme
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Fig. 5. Oscillating lake: well-balanced scheme. First-order scheme (times crosses). Second-
order scheme (plus crosses). Initial solution and bottom topography (solid and dotted lines).

are good, even for the first-order solution.
To finish our assessment of scheme performance in one space dimension, we

present a test case which is indicative of the robustness of a solver, as it involves
vacuum conditions. It exhibits very clearly the improvement due to the second-order
extension. We are interested in the case of an oscillating lake with a nonflat bottom
and nonvertical shores. The lake is initially at rest, but a small sinusoidal perturbation
affects the free surface:

z(x) = .5(1 − .5(cos(π(x− .5)/.5) + 1)),

h(0, x) = max(0, .4 − z(x) + .04 sin((x− .5)/.25) − max(0,−.4 + z(x))).

Then the flow oscillates, and at each timestep we have to treat an interface between
a wet cell and a dry cell on each shore of the lake. We present in Figure 5 the results
obtained with the well-balanced scheme with 200 points at t = 19.87s, because it
corresponds to a time where the flow reaches its higher level on the left shore. Both
first- and second-order well-balanced schemes are robust, but the first-order scheme
damps the oscillations much faster; fifty oscillations are enough to get back to rest.
On the other hand the second-order well-balanced scheme keeps the periodic regime
up to the machine accuracy.

4.2. Two-dimensional assessments. As the extension to second-order accu-
racy, the extension to the bidimensional case does not modify the idea of the method.
The one-dimensional solver is used at each cell interface, and we have a numerical
flux on each side of the interface, which are computed by Fl and Fr in (2.16) after an
appropriate rotation. In this way, a piece of the source term is naturally discretized at
the interface. The scheme is automatically well-balanced in the sense that lake-at-rest
steady states u = 0, h + z = cst are exactly preserved, and the water height remains
nonnegative. However, some specific problems arise, especially in the construction
of a two-dimensional well-balanced second-order scheme. We refer to [1], [2] for a
detailed description, especially for the explanation of the two-dimensional hydrostatic
second-order reconstruction.
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Water height - Initial Solution

Water height - Solution at t=.08s
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Scale for the water height

Free surface - Solution at t=.16s

Scale for the free surface level

Fig. 6. Two-dimensional dam break on dry bed with a lake-at-rest area.

We first present the academic case of a dam break on a dry bed but containing
a wet zone which consists of a small lake at rest. This case involves the vacuum
and allows us to exhibit the effect of the hydrostatic reconstruction to preserve the
initially at rest area. The first subfigure in Figure 6 presents the mesh and the
bottom topography. The bottom topography of the lake we can see on the right is
hemispheric. On the second subfigure we can see the initial water height: we see the
dam in the middle and the small lake at rest on the right. The free surface level in
the lake coincides with the reference level of the bottom topography of the river, i.e.,
(h + z)(0, x, y) = 0 everywhere on the right of the dam. On the third subfigure we
can see the rarefaction wave. Since it does not yet reach the lake, the steady state is
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Fig. 7. Filling up of a river. Bottom topography and free surface at different times.

preserved. Then on the fourth subfigure the rarefaction wave reaches the lake and the
water begins to move. On the last subfigure is presented the free surface level at this
final time. We can notice strong variations on the lake area which lead to the formation
of a hole in the left part of the lake (dark crescent), and a bump in the right part.

Then we present in Figure 7 another two-dimensional numerical test correspond-
ing to the filling up of a river. This test still involves a vacuum but also deals with
complex realistic geometry and bottom topography since it takes into account (i) a
jetty in the transversal direction, in the upper part of the figures; (ii) a bridge pillar,
the square on the lower part; and (iii) a small bump in the bottom topography. We
start with an empty river and we prescribe a given water level as the inflow condition.
On the first subfigure are presented the mesh and the associated bottom topography.
Then we can notice that the strong variations in the bottom topography due to the
jetty or the pillar bridge do not affect the robustness of the computation. On the
third and fourth subfigures we can see the bump since the water skirts it.

More results can be found in [1], [10], [28], [26], and in [8] with the Coriolis force.

REFERENCES

[1] E. Audusse, M.-O. Bristeau, and B. Perthame, Kinetic Schemes for Saint-Venant Equa-
tions with Source Terms on Unstructured Grids, Report RR-3989, INRIA Rocquencourt,
Le Chesnay, France, 2000; available online from http://www.inria.fr/rrrt/rr-3989.html.

[2] E. Audusse, M.-O. Bristeau, and B. Perthame, Second Order Kinetic Scheme for Saint-
Venant Equations with Source Terms on Unstructured Grids, preprint.

[3] D. S. Bale, R. J. LeVeque, S. Mitran, and J. A. Rossmanith, A wave propagation method
for conservation laws and balance laws with spatially varying flux functions, SIAM J. Sci.
Comput., 24 (2002), pp. 955–978.

[4] R. Botchorishvili, B. Perthame, and A. Vasseur, Equilibrium schemes for scalar conser-
vation laws with stiff sources, Math. Comp., 72 (2003), pp. 131–157.

[5] N. Botta, R. Klein, S. Langenberg, and S. Lützenkirchen, Well-balanced finite volume
methods for nearly hydrostatic flows, J. Comput. Phys., submitted. (See also PIK-report
84, Potsdam Institute for Climate Impact Research, Potsdam, Germany, available online
from http://www.pik-potsdam.de/reports.)

[6] N. Botta, R. Klein, and A. Owinoh, Distinguished limits, multiple scales asymptotics, and
numerics for atmospheric flows, in Proceedings of the 13th International Conference on
Atmosphere-Ocean Fluid Dynamics, Breckenridge, CO, American Meteorological Society,
Boston, MA, 2001.



WELL-BALANCED SCHEME FOR SHALLOW WATER FLOWS 2065

[7] F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws,
and Well-Balanced Schemes for Sources, Frontiers in Math., Birkhäuser, 2004.
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