153 research outputs found

    MiR-21 is Required for the Epithelial–Mesenchymal Transition in MDA-MB-231 Breast Cancer Cells

    Get PDF
    Breast cancer (BCa) is one of the leading health problems among women. Although significant achievements have led to advanced therapeutic success with targeted therapy options, more efforts are required for different subtypes of tumors and according to genomic, transcriptomic, and proteomic alterations. This study underlines the role of microRNA-21 (miR-21) in metastatic MDA-MB-231 breast cancer cells. Following the knockout of miR-21 from MDA-MB-231 cells, which have the highest miR-21 expression levels compared to MCF-7 and SK-BR-3 BCa cells, a decrease in epithelial-mesenchymal transition (EMT) via downregulation of mesenchymal markers was observed. Wnt-11 was a critical target for miR-21, and the Wnt-11 related signaling axis was altered in the stable miR-21 knockout cells. miR-21 expression was associated with a significant increase in mesenchymal markers in MDA-MB-231 BCa cells. Furthermore, the release of extracellular vesicles (EVs) was significantly reduced in the miR-21 KO cells, alongside a significant reduction in relative miR-21 export in EV cargo, compared with control cells. We conclude that miR-21 is a leading factor involved in mesenchymal transition in MDA-MB-231 BCa. Future therapeutic strategies could focus on its role in the treatment of metastatic breast cancer

    Identification of O-Linked Glycoproteins Binding to the Lectin Helix pomatia Agglutinin as Markers of Metastatic Colorectal Cancer

    Get PDF
    Background Protein glycosylation is an important post-translational modification shown to be altered in all tumour types studied to date. Mucin glycoproteins have been established as important carriers of O-linked glycans but other glycoproteins exhibiting altered glycosylation repertoires have yet to be identified but offer potential as biomarkers for metastatic cancer. Methodology In this study a glycoproteomic approach was used to identify glycoproteins exhibiting alterations in glycosylation in colorectal cancer and to evaluate the changes in O-linked glycosylation in the context of the p53 and KRAS (codon 12/13) mutation status. Affinity purification with the carbohydrate binding protein from Helix pomatia agglutinin (HPA) was coupled to 2-dimensional gel electrophoresis with mass spectrometry to enable the identification of low abundance O-linked glycoproteins from human colorectal cancer specimens. Results Aberrant O-linked glycosylation was observed to be an early event that occurred irrespective of the p53 and KRAS status and correlating with metastatic colorectal cancer. Affinity purification using the lectin HPA followed by proteomic analysis revealed annexin 4, annexin 5 and CLCA1 to be increased in the metastatic colorectal cancer specimens. The results were validated using a further independent set of specimens and this showed a significant association between the staining score for annexin 4 and HPA and the time to metastasis; independently (annexin A4: Chi square 11.45, P = 0.0007; HPA: Chi square 9.065, P = 0.0026) and in combination (annexin 4 and HPA combined: Chi square 13.47; P = 0.0002). Conclusion Glycoproteins showing changes in O-linked glycosylation in metastatic colorectal cancer have been identified. The glycosylation changes were independent of p53 and KRAS status. These proteins offer potential for further exploration as biomarkers and potential targets for metastatic colorectal cancer

    Development and Optimization of a Machine-Learning Prediction Model for Acute Desquamation After Breast Radiation Therapy in the Multicenter REQUITE Cohort.

    Get PDF
    Some patients with breast cancer treated by surgery and radiation therapy experience clinically significant toxicity, which may adversely affect cosmesis and quality of life. There is a paucity of validated clinical prediction models for radiation toxicity. We used machine learning (ML) algorithms to develop and optimise a clinical prediction model for acute breast desquamation after whole breast external beam radiation therapy in the prospective multicenter REQUITE cohort study. Using demographic and treatment-related features (m = 122) from patients (n = 2058) at 26 centers, we trained 8 ML algorithms with 10-fold cross-validation in a 50:50 random-split data set with class stratification to predict acute breast desquamation. Based on performance in the validation data set, the logistic model tree, random forest, and naïve Bayes models were taken forward to cost-sensitive learning optimisation. One hundred and ninety-two patients experienced acute desquamation. Resampling and cost-sensitive learning optimisation facilitated an improvement in classification performance. Based on maximising sensitivity (true positives), the "hero" model was the cost-sensitive random forest algorithm with a false-negative: false-positive misclassification penalty of 90:1 containing m = 114 predictive features. Model sensitivity and specificity were 0.77 and 0.66, respectively, with an area under the curve of 0.77 in the validation cohort. ML algorithms with resampling and cost-sensitive learning generated clinically valid prediction models for acute desquamation using patient demographic and treatment features. Further external validation and inclusion of genomic markers in ML prediction models are worthwhile, to identify patients at increased risk of toxicity who may benefit from supportive intervention or even a change in treatment plan. [Abstract copyright: © 2022 The Authors.

    Incorporating progesterone receptor expression into the PREDICT breast prognostic model

    Get PDF
    Background: Predict Breast (www.predict.nhs.uk) is an online prognostication and treatment benefit tool for early invasive breast cancer. The aim of this study was to incorporate the prognostic effect of progesterone receptor (PR) status into a new version of PREDICT and to compare its performance to the current version (2.2).Method: The prognostic effect of PR status was based on the analysis of data from 45,088 European patients with breast cancer from 49 studies in the Breast Cancer Association Consortium. Cox proportional hazard models were used to estimate the hazard ratio for PR status. Data from a New Zealand study of 11,365 patients with early invasive breast cancer were used for external validation. Model calibration and discrimination were used to test the model performance.Results: Having a PR-positive tumour was associated with a 23% and 28% lower risk of dying from breast cancer for women with oestrogen receptor (ER)-negative and ER-positive breast cancer, respectively. The area under the ROC curve increased with the addition of PR status from 0.807 to 0.809 for patients with ER-negative tumours (p = 0.023) and from 0.898 to 0. 902 for patients with ER-positive tumours (p = 2.3 x 10(-6)) in the New Zealand cohort. Model calibration was modest with 940 observed deaths compared to 1151 predicted.Conclusion: The inclusion of the prognostic effect of PR status to PREDICT Breast has led to an improvement of model performance and more accurate absolute treatment benefit predic-tions for individual patients. Further studies should determine whether the baseline hazard function requires recalibration. (C) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe
    corecore