740 research outputs found
Cloned mouse cells with natural killer function and cloned suppressor T cells express ultrastructural and biochemical features not shared by cloned inducer T cells.
We have examined the morphology, cytochemistry, and biochemistry of mouse leukocyte subsets by analyzing cloned leukocyte populations specialized to perform different immunologic functions. Cloned cells expressing high-affinity plasma membrane receptors for IgE and mediating natural killer (NK) lysis and cloned antigen-specific suppressor T cells contained prominent osmiophilic cytoplasmic granules similar by ultrastructure to those of mouse basophils. Both clones also incorporated 35SO4 into granule-associated sulfated glycosaminoglycans, expressed a characteristic ultrastructural pattern of nonspecific esterase activity, incorporated exogenous [3H]5-hydroxytryptamine, and contained cytoplasmic deposits of particulate glycogen. By contrast, cloned inducer T cells lacked cytoplasmic granules and glycogen, incorporated neither 35SO4 nor [3H]5-hydroxytryptamine, and differed from the other clones in pattern of nonspecific esterase activity. These findings establish that certain cloned cells with NK activity and cloned suppressor T cells express morphologic and biochemical characteristics heretofore associated with basophilic granulocytes. However, these clones differ in surface glycoprotein expression and immunologic function, and the full extent of the similarities and differences among these populations and basophils remains to be determined
Recommended from our members
Mast cell clones: a model for the analysis of cellular maturation.
Cloned mouse mast cells resemble, by ultrastructure, immature mast cells observed in vivo. These mast cell clones can be grown in the absence of any other cells, facilitating direct investigations of their biochemistry and function. We find that cloned mast cells express plasma membrane receptors (Fc epsilon R) that bind mouse IgE with an equilibrium constant (KA) similar to that of normal mouse peritoneal mast cells. In addition, cloned mast cells do not display detectable la antigens and cannot enhance lg secretion when added to lymphocyte cultures or mediate natural killer lysis. In the presence of 1 mM sodium butyrate, cloned mast cells stop dividing and acquire abundant electron-dense cytoplasmic granules similar to those of mature mast cells. Their histamine content increases concomitant with cytoplasmic granule maturation and may exceed that of untreated mast cells by 50-fold. Unlike peritoneal mast cells, cloned mast cells incorporate 35SO4 into chondroitin sulfates rather than heparin. These findings demonstrate that, unlike fully differentiated mouse peritoneal mast cells, cloned immature mouse mast cells contain no heparin and low levels of histamine. In addition, they establish that high-affinity Fc epsilon R are expressed early in mast cell maturation, well before completion of cytoplasmic granule synthesis and mediator storage
Why are tumour blood vessels abnormal and why is it important to know?
Tumour blood vessels differ from their normal counterparts for reasons that have received little attention. We report here that they are of at least six distinct types, we describe how each forms, and, looking forward, encourage the targeting of tumour vessel subsets that have lost their vascular endothelial growth factor-A (VEGF-A) dependency and so are likely unresponsive to anti-VEGF-A therapies
Efficacy and safety of enzyme replacement therapy with BMN 110 (elosulfase alfa) for Morquio A syndrome (mucopolysaccharidosis IVA): a phase 3 randomised placebo-controlled study.
ObjectiveTo assess the efficacy and safety of enzyme replacement therapy (ERT) with BMN 110 (elosulfase alfa) in patients with Morquio A syndrome (mucopolysaccharidosis IVA).MethodsPatients with Morquio A aged ≥5 years (N = 176) were randomised (1:1:1) to receive elosulfase alfa 2.0 mg/kg/every other week (qow), elosulfase alfa 2.0 mg/kg/week (weekly) or placebo for 24 weeks in this phase 3, double-blind, randomised study. The primary efficacy measure was 6-min walk test (6MWT) distance. Secondary efficacy measures were 3-min stair climb test (3MSCT) followed by change in urine keratan sulfate (KS). Various exploratory measures included respiratory function tests. Patient safety was also evaluated.ResultsAt week 24, the estimated mean effect on the 6MWT versus placebo was 22.5 m (95 % CI 4.0, 40.9; P = 0.017) for weekly and 0.5 m (95 % CI -17.8, 18.9; P = 0.954) for qow. The estimated mean effect on 3MSCT was 1.1 stairs/min (95 % CI -2.1, 4.4; P = 0.494) for weekly and -0.5 stairs/min (95 % CI -3.7, 2.8; P = 0.778) for qow. Normalised urine KS was reduced at 24 weeks in both regimens. In the weekly dose group, 22.4 % of patients had adverse events leading to an infusion interruption/discontinuation requiring medical intervention (only 1.3 % of all infusions in this group) over 6 months. No adverse events led to permanent treatment discontinuation.ConclusionsElosulfase alfa improved endurance as measured by the 6MWT in the weekly but not qow dose group, did not improve endurance on the 3MSCT, reduced urine KS, and had an acceptable safety profile
Vascular permeability, vascular hyperpermeability and angiogenesis
The vascular system has the critical function of supplying tissues with nutrients and clearing waste products. To accomplish these goals, the vasculature must be sufficiently permeable to allow the free, bidirectional passage of small molecules and gases and, to a lesser extent, of plasma proteins. Physiologists and many vascular biologists differ as to the definition of vascular permeability and the proper methodology for its measurement. We review these conflicting views, finding that both provide useful but complementary information. Vascular permeability by any measure is dramatically increased in acute and chronic inflammation, cancer, and wound healing. This hyperpermeability is mediated by acute or chronic exposure to vascular permeabilizing agents, particularly vascular permeability factor/vascular endothelial growth factor (VPF/VEGF, VEGF-A). We demonstrate that three distinctly different types of vascular permeability can be distinguished, based on the different types of microvessels involved, the composition of the extravasate, and the anatomic pathways by which molecules of different size cross-vascular endothelium. These are the basal vascular permeability (BVP) of normal tissues, the acute vascular hyperpermeability (AVH) that occurs in response to a single, brief exposure to VEGF-A or other vascular permeabilizing agents, and the chronic vascular hyperpermeability (CVH) that characterizes pathological angiogenesis. Finally, we list the numerous (at least 25) gene products that different authors have found to affect vascular permeability in variously engineered mice and classify them with respect to their participation, as far as possible, in BVP, AVH and CVH. Further work will be required to elucidate the signaling pathways by which each of these molecules, and others likely to be discovered, mediate the different types of vascular permeability
Does inter-vertebral range of motion increase after spinal manipulation? A prospective cohort study.
Background: Spinal manipulation for nonspecific neck pain is thought to work in part by improving inter-vertebral range of motion (IV-RoM), but it is difficult to measure this or determine whether it is related to clinical outcomes.
Objectives: This study undertook to determine whether cervical spine flexion and extension IV-RoM increases after a course of spinal manipulation, to explore relationships between any IV-RoM increases and clinical outcomes and to compare palpation with objective measurement in the detection of hypo-mobile segments.
Method: Thirty patients with nonspecific neck pain and 30 healthy controls matched for age and gender received quantitative fluoroscopy (QF) screenings to measure flexion and extension IV-RoM (C1-C6) at baseline and 4-week follow-up between September 2012-13. Patients received up to 12 neck manipulations and completed NRS, NDI
and Euroqol 5D-5L at baseline, plus PGIC and satisfaction questionnaires at follow-up. IV-RoM accuracy, repeatability and hypo-mobility cut-offs were determined. Minimal detectable changes (MDC) over 4 weeks were calculated
from controls. Patients and control IV-RoMs were compared at baseline as well as changes in patients over 4 weeks. Correlations between outcomes and the number of manipulations received and the agreement (Kappa) between palpated and QF-detected of hypo-mobile segments were calculated.
Results: QF had high accuracy (worst RMS error 0.5o) and repeatability (highest SEM 1.1o, lowest ICC 0.90) for
IV-RoM measurement. Hypo-mobility cut offs ranged from 0.8o to 3.5o. No outcome was significantly correlated with increased IV-RoM above MDC and there was no significant difference between the number of hypo-mobile segments in patients and controls at baseline or significant increases in IV-RoMs in patients. However, there was a modest and significant correlation between the number of manipulations received and the number of levels and directions whose IV-RoM increased beyond MDC (Rho=0.39, p=0.043). There was also no agreement between palpation and QF in identifying hypo-mobile segments (Kappa 0.04-0.06).
Conclusions: This study found no differences in cervical sagittal IV-RoM between patients with non-specific neck pain and matched controls. There was a modest dose-response relationship between the number of manipulations given and number of levels increasing IV-RoM - providing evidence that neck manipulation has a mechanical effect at segmental levels. However, patient-reported outcomes were not related to this
Mechanisms of leukocyte lipid body formation and function in inflammation
An area of increasingly interest for the understanding of cell signaling are the spatio-temporal aspects of the different enzymes involved in lipid mediator generation (eicosanoid-forming enzymes, phospholipases and their regulatory kinases and phosphatases) and pools of lipid precursors. The compartmentalization of signaling components within discrete and dynamic sites in the cell is critical for specificity and efficiency of enzymatic reactions of phosphorilation, enzyme activation and function. We hypothesized that lipid bodies - inducible non-membrane bound cytoplasmic lipid domains - function as specialized intracellular sites of compartmentalization of signaling with major roles in lipid mediator formation within leukocytes engaged in inflammatory process. Over the past years substantial progresses have been made demonstrating that all enzymes involved in eicosanoid synthesis localize at lipid bodies and lipid bodies are distinct sites for eicosanoid generation. Here we will review our current knowledge on the mechanisms of formation and functions of lipid bodies pertinent to inflammation
In vivo fluorescence imaging of the transport of charged chlorine6 conjugates in a rat orthotopic prostate tumour
Polymeric drug conjugates are used in cancer therapy and, varying their molecular size and charge, will affect their in vivo transport and extravasation in tumours. Partitioning between tumour vasculature and tumour tissue will be of particular significance in the case of photosensitizer conjugates used in photodynamic therapy, where this partitioning can lead to different therapeutic effects. Poly-l-lysine chlorine6 conjugates (derived from polymers of averageMr 5000 and 25 000) were prepared both in a cationic state and by poly-succinylation in an anionic state. A fluorescence scanning laser microscope was used to follow the pharmacokinetics of these conjugates in vivo in an orthotopic rat prostate cancer model obtained with MatLyLu cells. Fluorescence was excited with the 454–528 nm group of lines of an argon laser and a 570 nm long pass filter used to isolate the emission. Results showed that the conjugates initially bound to the walls of the vasculature, before extravasating into the tissue, and eventually increasing in fluorescence. The anionic conjugates produced tissue fluorescence faster than the cationic ones, and surprisingly, the largerMr conjugates produced tissue fluorescence faster than the smaller ones with the same charge. These results are consistent with differences in aggregation state between conjugates. © 1999 Cancer Research Campaig
Maximum tumor diameter is not an independent prognostic factor in high-risk localized prostate cancer
Contains fulltext :
69173.pdf (publisher's version ) (Closed access)OBJECTIVES: Previous studies suggest that maximum tumor diameter (MTD) is a predictor of recurrence in prostate cancer (PC). This study investigates the prognostic value of MTD for biochemical recurrence (BCR) in patients with PC, after radical prostatectomy (RP), with emphasis on high-risk localized prostate cancer. METHODS: RP specimens of 542 patients were evaluated with a median follow-up of 39.5 months (range 0.6-150 months). MTD was defined as the largest diameter of the largest tumor; high-risk as >or=T2c or PSA level>20 ng/ml or Gleason score>or=8 and BCR as two consecutive PSA levels>0.10 ng/ml. Proportional hazards multivariable regression models were composed to determine prognostic factors for BCR. RESULTS: Overall, 114 patients developed BCR after RP. The overall 5-year risk of BCR was 25% (95% CI=20.4-29.6), and median MTD was 24 mm (range 1-65). MTD in the total and high-risk group was associated with total tumor volume, volume of the largest tumor, pre-operative PSA levels, and Gleason score. In a univariable analyses, MTD was weakly associated with risk of BCR (HR=1.02 per mm increase, 95% CI=1.002-1.035, P=0.024) in the total group; in the high-risk group this association was lost (HR=1.01, 95%CI=0.99-1.03, P=0.18). Multivariable analyses indicated that positive surgical margins, higher Gleason score, advanced pathological stage, and multiple tumors were the main prognostic factors for BCR irrespective of the risk profile. MTD did not provide additional information. CONCLUSIONS: MTD is not an independent prognostic factor for BCR in patients treated with RP, irrespective of the risk profile
- …