69 research outputs found

    De staat van de Noordzee

    Get PDF

    Ontwikkeling van de HydroRig

    Get PDF
    De HydroRig is een alternatief vistuig voor de vangst van platvis ter vervanging van de wekkerstimulering in de boomkorvisserij. De noodzaak voor alternatieven komt voort uit ecosysteem kritiek op de boomkor met wekkers en de sterk oplopende brandstofkosten. In Nederland werden er al proeven gedaan aan een vistuig waarbij de boom is vervangen door een vleugel om de stroming op de bodem te beïnvloeden. Het idee van beïnvloeding van de stroming om vangst te verbeteren kwam oorspronkelijk uit de VS in een toepassing op een schelpdierkor. Door middel van bolkappen in het vistuig worden bodemdieren omhoog gedreven om beschikbaar te komen voor vangst. Dit rapport beschrijft de ontwikkeling vanaf 2008 in het VIP project HydroRig een geeft de stadia, van experimenten op zee met een aangepast vleugelprofiel, stromingsberekeningen en proeven in het laboratorium (water-grond goot) van DELTARES te Delft aan zgn. ‘bolkappen’, en toepassing hiervan op zee in verschillende configuraties met vangstmonitoring en onderwaterobservaties op de FD-281. Aan het eind van het project werden door middel van modelproeven in de ‘flume tank’ van IFREMER te Boulogne, Frankrijk nieuwe ontwerpen gemaakt voor een net met de onderpees dichter bij de boom. Gemiddeld werd bij vergelijking met het zusterschip FD-283, ook vissend op schol met een traditioneel boomkortuig en 100 mm maaswijdte, met de HydroRig (FD-281) ca. 21% brandstof bespaard, maar daartegenover stond een ca. 32% lagere besomming. Het vissen met de HydroRig in het commerciële bedrijf stagneert momenteel door de lage scholprijzen, die een belemmering vormen tot verder experimenteren. Toch wordt aanbevolen de proeven met bolkappen en nieuwe netontwerpen te vervolgen en te pogen de visnamigheid op schol te verbeteren, omdat de HydroRig veel minder benthos bijvangt

    On the Effect of a Secondary Structure upon the Interference of X-rays

    Get PDF
    Laue's dynamic theory of x-ray interference is shown to be applicable, with only a few minor changes, to crystals having a very general type of secondary structure. It is thus applied for the purpose of obtaining a quantitative estimate of the effect of such a structure upon the nature of the x-ray interference maxima. The estimate is relative insofar as it compares the intensities of respectively the "secondarily" and the "primarily" reflected interference beams and applies only in the region where the latter have been, or can be observed. In this region the "two-dimensional lattice" type of secondary structure is found to give rise to a fine structure which, with the present insufficient resolving power, would be manifested experimentally as a weak, diffuse background. The secondary structure of this type produces no broadening of the primary lines. The existence of this type of structure, therefore, is not inconsistent with the sharpness of the interference maxima obtained from such crystals as calcite, and a possible objection to the existence of the secondary structure in such crystals is removed. The extinction effect is briefly considered, but absorption is not taken into account, except with a few qualitative remarks

    Copepod feeding currents:flow patterns, filtration rates and energetics

    Get PDF
    Particle image velocimetry was used to construct a quasi 3-dimensional image of the flow generated by the feeding appendages of the calanoid copepod Temora longicornis. By scanning layers of flow, detailed information was obtained on flow velocity and velocity gradients. The flow around feeding T. longicornis was laminar, and was symmetrical viewed dorsally, but highly asymmetrical viewed laterally, with high levels of vorticity on the ventral side. The flow rate through the feeding appendages varied between 77 and 220 ml day(-1) per individual. The morphology of the flow field ensured that water was entrained over the full length of the first antennae. These were kept out of areas with high velocity gradients that could interfere with distant mechano- or chemoreception. The volume of influence, i.e. the volume of water around the foraging copepod, where shear rates were significantly higher than background levels, was calculated. Implications for encounter probability and mechanoreception are discussed. The average rate of energy dissipation within the copepod's volume of influence is several times higher than the levels of turbulent energy dissipation these animals are likely to encounter in their environment. Even in highly turbulent environments, adult T. longicornis will not experience very significant effects of turbulence. Within the volume of influence of the copepods the energy dissipation due to viscous friction varied between 6.6x10(-11) and 2.3x10(-10) W. Taking mechanical efficiency and muscle efficiency into account, this results in a total energetic cost of the feeding current of 1.6x10(-9) W per copepod. This value represents only a small percentage of the total energy budget of small calanoid copepods

    Preparing for climate change: a research framework on the sediment - sharing systems of the Dutch, German and Danish Wadden Sea for the development of an adaptive strategy for flood safety

    Get PDF
    The report proposes a research framework which follows a learning-by-doing approach along the three research lines: monitoring & data analysis, system research & modelling and field experiments (pilots). All studies together will take several decades, partially due to the many questions, partially because studying changes in the system via the above-mentioned research lines takes time. Research programs developed on basis of this framework may focus on a part of the research issue

    Conformal Mappings and Dispersionless Toda hierarchy

    Full text link
    Let D\mathfrak{D} be the space consists of pairs (f,g)(f,g), where ff is a univalent function on the unit disc with f(0)=0f(0)=0, gg is a univalent function on the exterior of the unit disc with g(∞)=∞g(\infty)=\infty and f′(0)g′(∞)=1f'(0)g'(\infty)=1. In this article, we define the time variables tn,n∈Zt_n, n\in \Z, on D\mathfrak{D} which are holomorphic with respect to the natural complex structure on D\mathfrak{D} and can serve as local complex coordinates for D\mathfrak{D}. We show that the evolutions of the pair (f,g)(f,g) with respect to these time coordinates are governed by the dispersionless Toda hierarchy flows. An explicit tau function is constructed for the dispersionless Toda hierarchy. By restricting D\mathfrak{D} to the subspace Σ\Sigma consists of pairs where f(w)=1/g(1/wˉ)ˉf(w)=1/\bar{g(1/\bar{w})}, we obtain the integrable hierarchy of conformal mappings considered by Wiegmann and Zabrodin \cite{WZ}. Since every C1C^1 homeomorphism γ\gamma of the unit circle corresponds uniquely to an element (f,g)(f,g) of D\mathfrak{D} under the conformal welding γ=g−1∘f\gamma=g^{-1}\circ f, the space HomeoC(S1)\text{Homeo}_{C}(S^1) can be naturally identified as a subspace of D\mathfrak{D} characterized by f(S1)=g(S1)f(S^1)=g(S^1). We show that we can naturally define complexified vector fields \pa_n, n\in \Z on HomeoC(S1)\text{Homeo}_{C}(S^1) so that the evolutions of (f,g)(f,g) on HomeoC(S1)\text{Homeo}_{C}(S^1) with respect to \pa_n satisfy the dispersionless Toda hierarchy. Finally, we show that there is a similar integrable structure for the Riemann mappings (f−1,g−1)(f^{-1}, g^{-1}). Moreover, in the latter case, the time variables are Fourier coefficients of γ\gamma and 1/γ−11/\gamma^{-1}.Comment: 23 pages. This is to replace the previous preprint arXiv:0808.072

    Mergelyan sets and the modulus of continuity of analytic functions

    Get PDF
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/21993/1/0000405.pd

    The Cesàro operator in growth Banach spaces of analytic functions

    Full text link
    [EN] The CesA ro operator C, when acting in the classical growth Banach spaces and , for , of analytic functions on , is investigated. Based on a detailed knowledge of their spectra (due to A. Aleman and A.-M. Persson) we are able to determine the norms of these operators precisely. It is then possible to characterize the mean ergodic and related properties of C acting in these spaces. In addition, we determine the largest Banach space of analytic functions on which C maps into (resp. into ); this optimal domain space always contains (resp. ) as a proper subspace.The research of the first two authors was partially supported by the projects MTM2013-43540-P and GVA Prometeo II/2013/013.Albanese, A.; Bonet Solves, JA.; Ricker, WJ. (2016). The Cesàro operator in growth Banach spaces of analytic functions. Integral Equations and Operator Theory. 86(1):97-112. https://doi.org/10.1007/s00020-016-2316-zS97112861Albanese A.A., Bonet J., Ricker W.J.: Convergence of arithmetic means of operators in Fréchet spaces. J. Math. Anal. Appl. 401, 160–173 (2013)Albanese, A.A., Bonet, J.,Ricker, W.J.: The Cesàro operator on power series spaces. Preprint (2016)Albrecht E., Miller T.L., Neumann M.M.: Spectral properties of generalized Cesàro operators on Hardy and weighted Bergman spaces. Archiv Math. 85, 446–459 (2005)Aleman A.: A class of integral operators on spaces of analytic functions. In: Proc. of the Winter School in Operator Theory and Complex Analysis, Univ. Málaga Secr. Publ., Málaga, pp. 3–30 (2007)Aleman A., Constantin O.: Spectra of integration operators on weighted Bergman spaces. J. Anal. Math. 109, 199–231 (2009)Aleman A., Persson A.-M.: Resolvent estimates and decomposable extensions of generalized Cesàro operators. J. Funct. Anal. 258, 67–98 (2010)Aleman A., Siskakis A.G.: An integral operator on H p . Complex Var. Theory Appl. 28, 149–158 (1995)Aleman A., Siskakis A.G.: Integration operators on Bergman spaces. Indiana Univ. Math. J. 46, 337–356 (1997)Bayart F., Matheron E.: Dynamics of Linear Operators. Cambridge University Press, Cambridge (2009)Bierstedt K.D., Bonet J., Galbis A.: Weighted spaces of holomorphic functions on balanced domains. Michigan Math. J. 40, 271–297 (1993)Bierstedt K.D., Bonet J., Taskinen J.: Associated weights and spaces of holomorphic functions. Studia Math. 127, 137–168 (1998)Bierstedt, K.D., Summers, W.H.: Biduals of weighted Banach spaces of analytic functions. J. Aust. Math. Soc. 54, 70–79 (1993)Bonet J., Domanski P., Lindström M.: Essential norm and weak compactness on weighted Banach spaces of analytic functions. Can. Math. Bull. 42, 139–148 (1999)Curbera G.P., Ricker W.J.: Extensions of the classical Cesàro operator on Hardy spaces. Math. Scand. 108, 279–290 (2011)Danikas N., Siskakis A.: The Cesàro operator on bounded analytic functions. Analysis 13, 295–299 (1993)Duren P.: Theory of H p Spaces. Academic Press, New York (1970)Dunford N., Schwartz J.T.:Linear Operators I: General Theory, 2nd Printing. Wiley Interscience Publ., New York (1964)Grosse-Erdmann K., Peris A.: Linear Chaos. Springer, London (2011)Harutyunyan A., Lusky W.: On the boundedness of the differentiation operator between weighted spaces of holomorphic functions. Studia Math. 184, 233–247 (2008)Hedenmalm H., Korenblum B., Zhu K.: Theory of Bergman Spaces. Grad. Texts in Math., vol. 199. Springer, New York (2000)Katzelson Y., Tzafriri L.: On power bounded operators. J. Funct. Anal. 68, 313–328 (1968)Krengel U.: Ergodic Theorems. de Gruyter Studies in Mathematics, vol. 6. Walter de Gruyter Co., Berlin (1985)Lin M.: On the uniform ergodic theorem. Proc. Am. Math. Soc. 43, 337–340 (1974)Lusky W.: On the isomorphism classes of weighted spaces of harmonic and holomorphic functions. Studia Math. 175(1), 19–40 (2006)Megginson R.E.: An Introduction to Banach Space Theory. Springer, New York (1998)Meise R., Vogt D.: Introduction to Functional Analysis. Clarendon Press, Oxford (1997)Persson A.-M.: On the spectrum of the Cesàro operator on spaces of analytic functions. J. Math. Anal. Appl. 340, 1180–1203 (2008)Rubel L.A., Shields A.L.: The second dual of certain spaces of analytic functions. J. Aust. Math. Soc. 11, 276–280 (1970)Shields A.L., Williams D.L.: Bounded projections, duality and multipliers in spaces of analytic functions. Trans. Am. Math. Soc. 162, 287–302 (1971)Siskakis A.: Volterra operators on spaces of analytic functions—a survey. In: Proc. of the First Advanced Course in Operator Theory and Complex Analysis, Univ. Sevilla Serc. Publ., Seville, pp. 51–68 (2006
    • …
    corecore