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1. INTRODUCTION 

For f a function continuous on the closed unit disk and analytic in the 
interior, let 

4% f) = sup{1 f(z1) - f(zz)l : I Zl - zg I < 6, I Zl I < 1, I -3 I B 1) 

and 

wt f> = sup{1 f(z1) - f(zz>l : I Zl - z2 I < 6, I z1 I = I z2 I = l> 
denote, respectively, the modulus of continuity off on the closed unit disk 
and the modulus of continuity of the restriction offto the boundary { 1 z I= l}. 
We consider here the question of determining the relationship of w(S,f) 
and G(S, f). Clearly, one has &(S, f) < ~(6, f), and we are concerned here 
with the extent to which the reverse inequality holds. For certain measures 
of growth, &(S,f) and w(S,f) are the same. For example, if 01 is given 
(0 < 01 < 1) and if &(S,f) < S”, then w(S,f) < Sm (see Theorem 2.2). 
However, it is not true in general that ~(6, f) = &(S, f) (see Section 4 for an 
example). Nevertheless, we do have the following result. 

The disk algebra A denotes the class of functions f that are continuous 
onIzI<landanalyticinIzI<l. 
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THEOREM 1.1. There exists a constant C > 0 such that 

46 f) < cqx f) 

for all 6 > 0 and all functions f 6 A. 

The example of Section 4 shows that C > 1, while the proof of Theorem 1.1 
(see Section 2) shows that we may take C < 3. For contrast we state the 
following known result for harmonic functions. 

THEOREM 1.1'. There exists a constant C such that 

for 0 < 6 < +, and all (complex-valued) functions f that are harmonic for 
1 z 1 < 1 and continuous for [ z / < 1. 

At the end of Section 2 we say a few words about the proof of this result; 
in Section 4 we point out that the factor log(1/6) is best possible. 

As noted above, the constant C in Theorem 1 .I is larger than 1. It is 
interesting to note that even in the small, the constant C is larger than 1; 
that is, there exists a function f E A with 

We give an example of such a function in Section 4. 
The problem of determining the relationship between ~(6, f) and &(6, f) 

arises naturally in approximation theory. In particular, Theorem 1.1 answers 
a question posed by Sewell [7, p. 321. The authors were led to the same 
question in the study of Mergelyan sets (see Section 3). 

DEFINITION. A subset F of the open unit disk is called a Mergelyan 
set if and only if every function g that is analytic on the open unit disk and 
uniformly continuous on F can be uniformly approximated by polynomials 
onallsetsoftheformFu{/zI ,<r}foreachO<r<l. 

In Section 3, we give some basic facts about Mergelyan sets. In particular, 
Theorem 1.1 allows us to prove that each set F that contains a bullseye, 
i.e., a set of the form u(I z I = r,}, where r, increases to 1, is a Mergelyan 
set (Proposition 3.5). An example is given that shows that the union of two 
Mergelyan sets need not be a Mergelyan set; another example shows that 
the intersection of two Mergelyan sets need not be a Mergelyan set. Since 
an earlier version of this paper was prepared, Stray [8] has given a charac- 
terization of Mergelyan sets. 
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It is of interest to study the relationship of ~(6, f) and i;(S, f) for domains 
other than the unit disk. If G is an open set and f is a continuous bounded 
function on G-, the closure of G in the finite plane, then we can define 

4&f; G> = su~{lf(z,) -f(z,>l :zl, zz 6 G-3 I z, - zz I < a> 
and 

&(%A G) = su~{/f(z,) -f(zz>l : ~1, zz E aG> I ZI - zz I d 8. 

As before, we clearly have w < G. The analogue of Theorem 1.1 holds to 
the following extent. Let r#(6) be a continuous increasing function with 
+(O) = 0 and Ml + %I < Wd + 4(h). 

THEOREM 1.2. If G is simply connected, and if f is continuous and 
bounded on G- and analytic in G, then 

G(S,s; G> < d(S) implies 4X f; G) < CW) 

where C is an absolute constant independent of G andf. 

For arbitrary domains in the plane an extensive study, of when results 
like Theorem 1.2 hold has been made by Tamrazov [9], who gives conditions 
in terms of the capacity of the complement of G near boundary points. As 
far as we can determine the discoveries of theorems relating w and i;, by 
ourselves and Tamrazov occurred almost simultaneously [5]. However, the 
methods are different. While the results presented here are not as complete 
as those of [9], the proofs are quite straightforward and, for a large class of 
domains, depend only on simple versions of the maximum principle. In 
particular, in Section 2, we give an elegant proof of Theorem 1.1 due to 
Robert Kaufman. We thank Prof. Kaufman for permission to reproduce 
his argument here. 

We also thank Prof. L. Carleson for his comments on an earlier version 
of this manuscript. Most of the arguments in Section 2 are based on an idea 
he suggested, and are much simpler than our original arguments. 

In Section 2, the main positive results relating w(6,f) and e&j) are 
presented. In Section 3, we discuss Mergelyan sets and some of their 
properties, and in Section 4 some examples showing that C > 1 are given. 

2. THE MODULUS OF CONTINUITY 

We begin with Kaufman’s proof of Theorem 1.1. 

Proof of Theorem 1.1. Let f be continuous for I z 1 < 1 and analytic for 
IzI <l.ForO<6<r/2,set 

g(z) = g(z, 6) = $ s_6 f(ze”“) dt. 
s 
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Then g, g’ are analytic for 1 z 1 < 1, continuous for 1 z j < 1, and have the 
following properties. 

I g’(z)1 < & 6(2 sin 6, f), Izi < 1. (2.2) 

For, from the maximum principle it suffices to prove (2.1) and (2.2) when 
1 z I = 1. Further, 1 g(eis) - f(eie)l = 1(1/(2S)) St8 {f(ei(B+t)) - f(e@)} dt I < 
i;(l eis - 1 1, f) = &(2sin(S/2), f) < &(S, f), which proves (2.1). Similarly, 
( g’(eis)l = I(a/i%) g(eie)) = (1/(26))( f(ei@+“)) - f(eice-*))l < (l/(26)&5(1 eis - 
e-ie I, f) = (l/(26)) 8(2 sin 6, f). 

Then writingf = (f - g) + g, we have from (2.1) and (2.2) that ~(6, f) < 
w&f- g) + w@, g) G 2 suPof - &)I : I z I G 11 + 6 SUPi1 g’(4l : 
I z I < 1) < 2w3,f) + Gi(2 sin S,f). However, it is easy to check that 
&(2 sin S,f) < 2&(S,f), so we have 

4c.f) G 3W$f) for 0 < 6 < 42, 

and Theorem 1.1 follows. 
To begin the study of w&f) on more general domains, we give a simple 

lemma on analytic functions. 

LEMMA 2.1. Let G be an open set in the plane and let u be a bounded, 
continuous function in G- which is analytic in G. Then 

SUPi 44 - 4zz)l : z1 , z2 E G-, I z1 - z2 1 < S} 

= sup{ I u(zr) - U(Z& : zr E 8G, z2 E G-, I z1 - z2 / < S}. (2.3) 

If G is bounded, the supremum in (2.3) can be replaced by maximum. 

Proof. Let A, B denote, respectively, the left and right-hand sides of (2.3). 
Clearly A > B. To prove the other inequality, let E > 0 and choose zr , 
z2 E G- with [ u(zr) - u(zJ > A - E. If z, or z2 E aG, then B > A - E. 
Thus, assume zl, z2 E G. Let b = z2 - z1 . Then the function F(z) = 
u(z + b) - u(z) is bounded and continuous in G,- and analytic in Gb , 
where Gb = {z : z E G and z + b E G) = G n (G - b). Since F is bounded, 
we have 

I F(z)\ < sup{1 F(w)/ : w E aGb, w # a> 

for all z E Gb . But / F(zl)I > A - E, and the result follows. 
Note that the supremum in (2.3) can sometimes be attained for pairs 

of points z1 , z2 both of which are inside of G. This happens, for example, 
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for the analytic function u(z) = z. The lemma only asserts that among the 
pairs for which the supremum is attained, there must exist one that meets 
the boundary. 

Hardy and Littlewood [4, p. 4271 proved the following result. If f~ A 
(the disk algebra) and if G(S,f) d a6, then w(S,f) < &. 

This result was improved by Sewell [7, Theorem 1.2.7, p. 171, who showed 
that we may take c = 1. We give a short proof here based on a different idea. 
Sewell also extended the result to arbitrary Jordan domains. 

THEOREM 2.2. Let f E A. Then for 0 -c a: < 1, 

sup 469f) m, f) - = sup-. 
S>? s= 8>1 601 (2.4) 

Proof. Fix 0~. The result is trivial if the right side of (2.4) is infinite, 
so without loss of generality we may assume that it is 1. That is, we have 

If(z)-fWl Glz--WI4 (I z 1 = 1, 1 w I = 1). (2.5) 

Now fix 6. By Lemma 2.1 there are points z1 , z2, with at least one on the 
boundary (we assume that 1 z2 1 = 1) for which w(8,f) = / f(zl) - f(z&. 
We must show that 1 f(zl) - f(z$ < j z1 - z2 Ior. This follows from (2.3) if 
] z1 I = 1, so we assume that z, I < 1. 

Let &z) = l/(z - z,)” (any b ranch). Then r$ is analytic for / z 1 < 1 and 
4 E HP (p < I/IX) (see [2, Section 4.6, Lemma, p. 651). Hence, the function 
g(z) = Lf(z> - f&J1 4( z is also in Hp. Further, g is continuous onto the ) 
boundary except perhaps at z = z2. On the boundary we have by (2.5): 

1 g(z)l = 1 f(z) - fW < 1 
1z-zZ2/a (I z I = 1, z # z2). 

Since g E HP and 1 g / < 1 almost everywhere on the boundary it follows 
that 1 g(z)1 < 1 for I z I < 1 (see [2, Theorem 2.11, p. 281). In particular, 
I g(zl)l < 1, which completes the proof. 

Since the constant C of Theorem 1.1 is greater than 1, it seems unlikely 
that Theorem 1.1 can be deduced from the maximum principle. 

One could prove Theorem 2.2 without recourse to HP theory by invoking 
a Phragmen-Lindelof theorem. The function g(z) is analytic in the unit 
disk, bounded by 1 on the boundary except at z2 , and does not grow too 
fast in the interior as we approach z2. Hence, it is bounded by 1 in the 
whole disk. (See [lo, Section 5.611 for the corresponding Phragmen-Lindelof 
theorem in a half-plane.) 
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We now indicate an alternative approach to this theorem. By the open 
polydisk in C2 we mean the set {(z, w) : 1 z 1 < 1, 1 w 1 < l}. By the dis- 
tinguished boundary we mean the set { 1 z / = I, 1 w 1 = 13. Assuming the 
hypotheses of Theorem 2.2 let 

= log f(z) - f(4 
z - 11 

+(l -fY)lOg/Z-IL’;. 

Then F is plurisubharmonic in the open polydisk, continuous on the closed 
polydisk except for the subset of the distinguished boundary where z = w. 
Further, F < a log c/i z - w 1 in the open polydisk, and F < 0 on the dis- 
tinguished boundary, except where z = w. Consequently, the family of 
functions F,+(e@, eid) = F+(reis, reib), where F+ = max(F, 0), is a uniformly 
integrable family, and F < 0 in the open polydisk follows from an extended 
version of the maximum principle [6, Theorem 3.2.4 (vi), p. 421. 

In the remainder of this section we give the proof of theorems analogous 
to Theorem 1.1 but for more general domains. For G a domain in the plane, 
let A(G-) denote the algebra of bounded continuous functions on G-, the 
closure of G in the finite plane, that are continuous in G- and analytic in G. 
ForfE A(G-), let 

4&f; G) = SUP{/ fh> - fW : z1 , z2 E G-, I z1 - zz I < S} (2.6) 

a@, fi G) = sup{/ f(zJ - f(z& : zr , zz E aG, I z1 - zz I < 8). (2.7) 

Further, if z E G, then let c(z) denote a point of the boundary of G with 

I z - c(z)1 = min{l z - i j : 5 E 8G). 

LEMMA 2.3. Iff E A(G-), then 

w(S,f; G) < a(26,f; G) + sup(IJ(z) -f@X4)I : z E G, I z - &)I G a>. 

Proof. Let E > 0. By Lemma 2.1 we can find z1 E aG, z E G with 
1 f(zJ - f(z)1 > u&S; G) - E, and I z1 - z I < 6. Then I 5(z) - z I < 6 so 
I z1 - c(z)/ ,( 26 and 

4% f; G) G 1 f(zJ - f@>l + 6 < I f(zJ - fW)l + I f(z) - f(Wl + E 
G W& f> + 6 + I f(z) - fcx4>I. 

Since E > 0 was arbitrary, the lemma follows. 
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From Lemma 2.3, we see that the only problem in relating w(S,f) and 
&(S, f) is to estimate the term / f(z) - f(<(z))[ when z E G. For nice domains, 
this is not difficult to do. To see this, fix a point 5 E 2G. Then define U(Z) = 
log I f(z) - .f(Ol* 

LEMMA 2.4. For 5 E ZG, f E A(G), u is a subharmonic function on G and 
we have the inequalities 

u(z) < log WWf; G), ZE~G, j z - ( j < 28. 

44 < log 46fi (-3, ZE~G, ! z - 5 / = AS, h > 1. (2.8) 

Proof. These inequalities are clear. 
Thus, to estimate the subharmonic function u in the interior of G, we 

should find a harmonic function that dominates u on aG. Then, by the 
maximum principle, it will also dominate u inside of G. For nice domains G, 
we can write down such a function explicitly. One such class of domains is 
the following. 

DEFINITION 2.5, We say that the complement of G is fat if there exist 
constants C > 1, 6, > 0 such that for all 5 E aD and all 0 < S < 6,) the 
ball {z : 1 z - 5 j < S} contains a point 5’ # G- such that I z - 5’ I 3 (l/C)6 
for all z E G-. 

For example, if G has a smooth boundary, the condition of Definition 
2.5 holds. Note also that if the complement of G is fat and 0 < S < 6, , 
5 E aG, and 5’ $ G- is a point related to 5 as above, then the function 

h(z) = h(z, 6, 5) = log / C(z - [‘)/S j (2.9) 

has the following properties. 

h(z) is harmonic in a neighborhood of G-; 
h(z) 3 0 if z E G-; 
h(z) > Iog(l z - i I/S) + log(C/2) if z E aG and h = [ z - 5 I/S > 2. 

All the assertions are clear, except for the last one. But, if z E G- and 
I z - 5 I 3 26, then I z - 5’ I 2 4 I z - 5 1, so 

h(z) 2 log ( c ’ ;, 5 ’ ). 

With this function h, we can now prove the following Theorem. 
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THEOREM 2.6. Suppose the complement of G is fat, in the sense of Definition 
2.5, and that 4 is a continuous, increasing subadditive function. Then for all 
f E A(G-), and 0 < 6 < 6,) 

Proof: From Lemma 2.4, we have for 5 E aG, U(Z) = log If(z) - j([)J < 
log #2S) if z E aG and 1 z - 5 j < 26, while u(z) < log 4(M) if z E aG and 
[ z - 5 1 = AS, h > 2. However, because 4 is subadditive, +(2S) < 2+(S), 
and, in general, for X > 1, we have #Vi) < 2h$(S). In particular, if h is the 
function of (2.9) then for z E aG and 1 z - 5 j < 26, we have 

u(z) < log 4(S) + log 2 < h(z) + log +(S) + log 2 

while if 1 z - < ( >, 2S and z E aG, 

44 < h(z) + log 2(1 z - 5 l/Q + log 4(S) 
< h(z) + log 4(S) + log 2 - log(W) 
< h(z) + log d(S) + log 4. 

Thus, in any case, 

44 < h(z) + log 4(S) + log 4, ZEaG. 

If we replace u by 22 = max(u, log d(S) -/- log 4) then the same inequality 
still holds, and zi’ is a bounded continuous function on G- with 12 subharmonic 
on G. Since h(z) + log b(S) + log 4 is harmonic and dominates C on aG, 
it also dominates z7 inside G. Thus, if z E G and / z - 5 I < S, then 

u(z) < h(z) $ log 4(S) + log 4 = log(C 1 z - i I/S> + log d(S) + log 4 
< log 2C + log 4(S) + log 4 = log 8C+(S). 

Hence, If(z) -f(c)1 < 8@(S). Combining this estimate with that of 
Lemma 2.3, and using the fact that +(2S) < 2&S) again, we have 

4&f; G> < (2 + gC> 69. 

Finally, we give a theorem for arbitrary simply connected regions. For 
this we will use an estimate of A. Beuriing [I, p. 551 for harmonic measure. 

Let G be a simply connected domain in the plane, let y C aG, and let 
z E G. Let r(z, G) = distance from z to LG, and r(z, y) = distance from z 
to y. Further, let W(Z, y, G) denote the harmonic measure of y for the domain 
G with respect to the point z. 
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THEOREM (Beurling, [l, p. 551). 

o(z, y, G) ,< G arc tan [+$,1,: 

THEOREM 2.7. Let G be simply connected and 4 a continuous increasing 
subadditive function for 6 > 0 with (b(S) > 0. Then for f E A(G-), 

where C is an absolute constant, independent of G. 

ProoJ Exactly as in the proof of Theorem 2.6, we must estimate the 
function u(z) = log 1 f(z) - f(l)1 for fixed 5 E aG. Let h(z) be the harmonic 
function on G such that on aG, 

h(t) = log &W, 5 E aG, I 4 - 5 I < 2~3 

h(t) = log +(W, 5 E aG, I 5 - 5 I 2 2% X = I 4 - 5 I/S. 

That is, h(z) = Jac h(e) w(z, de; G). If z E G and j z - 5 I < 6, then 

h(z) = : I h(5) 4z, df; G) 
a=1 % 

where E1 = (4 E aG : 1 5 - c 1 < 26) and for n 3 2, E, = (5 E aG : 2”6 < 
I ,$ - 5 I < 2n+1S). On the set E1 , h(n < log 4(2S) < log 24(S) while on 
E, , h(8) < log +(X6) < log 2@(S) = log +(S) + log 2 + log I t - c/S I < 
log 2&S) + (n + 1). Thus, h(z) < log 24(S) + Ciz2 (n + 1) 4, & ; G). 
But, / z - 5 1 < 6 implies r(z, G) < 6 and r(z, E,) > 2”s - 1 z - [ 1 > 2”-%. 
Thus, by Beurling’s theorem, w(z, E, ; G) < (4/7-r) tan-1[2-(1/z)(n-1)]. Since 
tan-’ x < x, x > 0, we have 

w(z, E, ; G) < 4 2-(n-1)/2, 7r 
so if 

we have 

A = ; +cm (n + 1) 2-h--1/2), 
n=2 

h(z) < A + log 2&S), z E G, ] z - 5 1 < 6. (2.10) 

The remainder of the proof is exactly the same as in the proof of Theorem 
2.6. The constant C is 2 + 2eA. 

64011511-3 
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3. MERGELYAN SETS 

DEFINITION 3.1. Let F be a subset of the open unit disk D. Then U(F) 
is the space of all functions that are analytic in D and uniformly continuous 
on F, in the topology of uniform convergence on every set of the form 
K v F, as K ranges over the compact subsets of D. 

Remark. By a standard device, U(F) is seen to be a metric space with 
metric 

where K, is a sequence of compact subsets of D such that every compact 
set in D is contained in a finite union of the K, , and 

[of’& = sup{/f(z)l : ZEE]. 

DEFINITION 3.2. A relatively closed subset F of D is said to be a Mergelyan 
set if the polynomials are dense in U(F). 

PROPOSITION 3.3. IfF is a Mergelyan set and if 4 : D + D is a one-to-one 
conformal map, then $(F) is a Mergelyan set. 

Proof. The proof is an easy consequence of the fact that C must be 
analytic on the closure of D, and we omit it. 

DEFINITION 3.4. A set F in D is said to be radial if there is a sequence 
r, --f l- such that F, n D C F where f, = (z/r, : z E F>. 

PROPOSITION 3.5. Every radial set is a Mergelyan set. 

The proof uses the familiar mapping f--f, , where f,(z) = f(rz), and 
we omit it. 

DEFINITION 3.6. The polynomial hull of G, H,(G), is the set of points z 
for which 

[ p(z)1 < sup{/ p(w)/ : w E G) 

for all polynomials p. 

DEFINITION 3.7. The uniformly continuous analytic hull of G C D with 
respect to F, HU,F(G), is the set of all points z E D for which 

for allfc U(F). 
I f(z)1 < sup{1 f(w>l : w E G> 
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PROPOSITION 3.8. If F is a Mergelyan set, then 

Hu,r(K u F) = H,(K u F) n D 

for every compact subset K of D. 

Proof It is clear that H,.,(G) C H,(G) n D for all subsets G of D. In 
the other direction, take z E H,(K u F) n D, and let f E U(F). Let P, be a 
sequence of polynomials which converge to f in U(F). Then 

I f(z)1 = !$ / P,(z)1 < lim-zp {I P,(w)]: w E K u F} 

= sup{If(w)j: w E K u F]. 

and the result follows. 
Stray [8] has recently established the converse to this proposition. 

PROPOSITION 3.9. Let F = {z,] be a Blaschke sequence (i.e., 
C 1 - 1 z, / < +CO, / z, / < 1)) such that every point of aD is a limit point 
of the z, . Then F is not a Mergelyan set. 

Proof It is clear that the Blaschke product over the z, cannot be 
approximated in U(F) by polynomials. 

DEFINITION 3.10. A bullseye is a closed subset of D that contains circles 
(z : / z 1 = r} for values of r arbitrarily close to 1. 

PROPOSITION 3.11. Every bullseye is a Mergelyan set. 

Proof. By Theorem 1.1, if f E U(F) then f must be uniformly continuous 
on 1 z j < 1 and is, consequently, the uniform limit on D of a sequence 
of polynomials. 

THEOREM 3.12. There exist two Mergelyan sets whose intersection is not 
a Mergelyan set. 

Proof. It is clear that there are two bullseyes whose intersection is a 
Blaschke sequence that is dense on aD. Propositions 3.9 and 3.11 now apply. 

PROPOSITION 3.13. Let J be a simple closed Jordan curve in D that intersects 
aD only at z = 1, and let J’ = J\(l). Then H,,,(J’) = J’. 

Proof We need only prove that if z $ J’ then there is an f E U(J) with 
I f(z)1 > 1 but I f(w) < 1 for w E J’. Without loss of generality, we will take 
2 = 0. Let +(z) = (1 + z)/(l - z) and let A = #J’). By Arakelian’s 
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theorem [2, Theorem 3.1, p. 371, there exists an entire function h such that 
] X(l)/ > 1 but 1 h(w)1 < 1 for w E A, and such that A(w) + 0 as w -+ co, 
w E A. (Just take a continuous function 01 on A u (1) that is large at 1 and 
small on A, tending to 0 at co, and approximate it within e/(1 + / z 1) on 
A u {I}, where E = l/10, say.) Let f(z) = A($(z)) to complete the proof. 

THEOREM 3.14. There exist two Mergelyan sets E and F in D whose union 
is not a Mergelyan set. 

ProoJ: Take E to be the radius from 0 to 1 and let F be a short circular 
arc that touches aD at 1 at right angles to aD. By Propositions 3.3 and 3.5 
both E and Fare Mergelyan sets. But let K be the straight line segment that 
joins the endpoints of E and F that lie in D, and let B = E u F. Then B v K 
is a set J’ of the form just discussed and so D n H,(B u K) # Hu,B(B u K). 
Indeed, the left-hand side is the inside of J’ while the right-hand side is just 
the curve J’. By Proposition 3.13, E u F is not a Mergelyan set, and the 
result is proved. 

4. EXAMPLES 

We give some examples which indicate that, in some sense, Theorem 1.1 is 
best possible. It is well-known thatTheorem 1 .l is false for harmonic functions. 
A simple example is given by the harmonic function on [ z j < 1 with the 
boundary function u(eit) = 1 eit - 1 1 - / t / for small t. Clearly, G(S, 24) ,( ~8. 
But, if 6 = 1 - r, then the Poisson kernel P(r, t) satisfies P(r, t) > (8/t2) 
for I t ) 3 S, so 

Thus, ~(6, U) 3 j u(r) - u(l)1 3 ~‘6 log(l/&). This example shows that the 
logarithmic factor in Theorem 1.1’ is best possible. 

An explicit example which shows that C > 1 in Theorem 1.1 is the function 
F which conformally maps the unit circle onto the region interior to the 
two circles which pass through + 1, - 1, and j-((2)lj2 - l)i, respectively. 
Normalize F so that F(0) = 0, F(1) = 1, Then an explicit formula for F is 

F(z) = 1 - (1 - z2)1/2 
Z 

It can be verified that &(I, F) = I F(eiv/3) - F(l)1 = 0.9332... < 1 = 
I F(1) - F(O)\ < ~(1, F). We will not give the details of this calculation here, 
however, since there are slightly less explicit examples which are easier to 
check. 
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A very simple function which is almost an example is the function 

g(z) = 21/4 + z113 

in the half-plane H = {z : Re z > 0). Unfortunately, g is not bounded, so 
it is not really an example. However, it is easy to modify g to obtain such an 
example. We first give the main properties of g. 

LEMMA 4.1. Let 0 < a < b < 113 andfor Re z > 0 let 

g(z) = za + zb = raeiae + rbeibe, z = reis, -=<s<+, 
2 

W) = wtg) = SUP~l&,) - s(~vz)l: I Yl - Yz I G a> 

w@) = 4% g) = sup{I g(zl> - g(z2)l : I z1 - z2 I d 6, Re zi 3 01. 

Then 
w9 = I gml < gm G 49, s > 0. 

Proof. Fix t > 0 and define $(y) = j g(iy) - g(i(y - t))12. We will show 
that 

sup{+(y) : --cg < y < +4 = $(t) = #CO) = I g(it)l” (4.1) 

and that 
max{I g(it)/ : 0 < t < S} = I g(iS)l. 

These two facts imply the lemma. We first prove (4.2). Write 

(4.2) 

so that 
g(Q) = u(v) + W) 

brr 
u(y) = y’cos~+ybcos- 2 Y>O 

brr U(Y) = yQ sin y + yb sin _ 2 4’20 

and 
U(Y) = 4-Y), O(Y) = -4Y). 

Clearly, u, z, are non-negative increasing functions for y > 0 and therefore 
so is I g(iy)l, which proves (4.2). 

To prove (4.1), consider the function C&V) = arg g(Q). Now tan C&J) = 
Ny)/u(y) = (tan(ar/2)){(1 + Xyc)/(l + pyc)} where c = b - a > 0, 

and cos(W2) < 1 
’ = cos(an/2) ’ 
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It is then easy to check that y t+ (1 + AyC)/(l + pyc) is increasing for y > 0. 
In particular, tan v(y) < lim,-, tan y(y) = tan@r/2). Thus, 0 < v(y) < 
bn/2 < ~-16 for y 3 0. 

Now write g(it) = poei%. Since j g(iy)] and argg(iy) are increasing for 
y 3 0, and since g(iy) = g(-iy), it follows that g(iy) belongs to the sector 

S = {w = p&m :o~pPppo,~~~~ 

whenever / y 1 < r. However, since v,, < 7r/6, it is clear that the diameter 
of the sector is 

p. = / poei% - 0 / = / g(d) - g(O)] = I g(it)l. 

Therefore, 
max{#(y) : 0 < y < tJ = 1 g(ir)j”. (4.3) 

Next consider y 3 t. A short caiculation shows $0) = [ha(y)12 + 
[MY>I~ + 244~) k,(y) co@ - 474% Y 3 t, where k4y) = ya - (Y - t>“. 
The function $ is thus the sum of three decreasing functions so 

SUP{~~Y> : y > t> = #(I) = I s(it)l”. (4.4) 

Eq. (4.1) is a consequence of (4.3) and (4.4). This completes the proof. 

Remark. The same argument will show that g(z) = z0 + zb with 
0 < a < 4, b < 1 has G(8) = g(i8) for small 6 > 0. 

As a consequence of the lemma, we can also see that &;(a, g) - ~(6, g) 
as 8 + 0. In fact, we have, with 

M(6) = I m - g(O)1 = go 
w% R) I 1 sW> 

that 
(Sa + P)2 

[M(*)l’ = 82~~ + 8% + 2aa+b cos((b - a)r/2) = 
(1 + 0” 

(1 + t)2 - 2t7j 

where t = Sb-, and 77 = 1 - coss(b - a)n/2) > 0. Thus, as 6 + 0, we 
have that 

M(S) = 1 + 7+Y-a + 0(P’b-“‘). (4.5) 

We want to modify g to obtain an example in the unit disc. The idea is to 
multiply g by R/(z + R) where R is a large positive number. This new 
function is then bounded in Re z > 0. If we then restrict it to a large disk 
I z - N 1 < N in the right half-plane, it provides an example on this large 
disk that can then be transferred to the unit disk. We will do a little more 
work and obtain an example in the unit disk D = (I z I < l} with 
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LEMMA 4.2. Let D = {z : 1 z / < l}. Then there exist numbers 6, > 0, 
h > 1, c > 0 such that: for every 6, 0 < 6 < 6, , there is a function k = k, 
analytic for j z j < 1, continuous for 1 z / < 1, and such that 

(1) / k(1 - S) - k(l)\ > X&(6, k; D), 

(2) I WI < 1, and 

(3) &(S, k; D) 3 c. 

Proof. For R 3 1, set h(z) = (R/(z + R)) g(z) where g is as in Lemma 4.1. 
Then 

w - Nz,) = R(zz - 4 
(zl + R)(z2 + R) g(zl) + & kbl) - &,)I. 

Therefore, if ,4(R) = max{I g(zl)/(zl + R)] : Re z1 >, 0} we have G(S, h) < 
A(R) 6 + a(& g) and then 

I m - h@)l 
W, 4 

> @l@ + RI) g(S) 
’ WX g) + 4W 

1 g(S) 
= 1 L S/R 1 g(iS)l + A(R)6 * (4.6) 

Now as R + co, we have A(R) + 0 so we can fix R = R, < 1 so large that 
A(R) < 1. Then, for small 6 > 0, we have 1 g(S)1 - S”, ( g(iS)j - S”, so the 
right-hand side of (4.6) is equal to 

-fJ& + O(S) as 6 -+ 0. 

Combined with (4.5), this yields 

I h(s) - 4O)l 
66 h) 

= 1 f 29Pcc + o(Pa) as 6 -+ 0. 

Thus, there is a constant 6, > 0 such that 

I h(s) - h(O)1 > , I ?$--a 
W, h) 

2 0 < 6 < 6,. (4.7) 

For N > 1 and 1 5 I < 1, let z = N(l - 5) and k(5) = k(<, N) = h(z). 
We claim that for large IV, the functions k8 = k( , N), where 6 = 6,/N, 
essentially satisfy the conditions of the lemma. For, since h(z) -+ 0 as I z I-fco, 
it follows that the modulus of continuity of the restriction of h to the large 
circles I z - N 1 = N tends to the modulus of continuity of the restriction of 
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h to the imaginary axis. Thus, for every T > 0, there is a number iV,, 2 1 
so large that 

and 

But then 

If T is small, say 7 < 4 +iVu, then h = [l + (7,1/2)6:-‘]/(l + T) > 1 and (1) 
of the lemma holds with al = 6,/N,, , 6 = &,/IV, and kB = k( ,6,/N). Since 
6&/N, k( , IV); 0) > (1 - T) &(6,, h), the condition (3) holds. Condition 
(2) may not hold, but since h is bounded we can divide each of the k( , N) 
by sup / h(z)/ to make it hold. This will not destroy (1) or (3). This completes 
the proof of the lemma. 

PROPOSITION 4.3. There exists a function F analytic for 1 z j < 1 and 
continuous for 1 z / < 1 such that, with D = {I z j < l}, 

lim sup I ‘(1 - 6) - ‘(‘)I > 1 
6-O 8(8, F; D) ’ 

Proof. The function F may be written explicitly as follows. For suitable 
sequences of positive numbers cj , & , 

F(z) = 1 Ejkj(z) 
j=l 

where kj is a function as in Lemma 4.2 associated to the number 6$ . To 
carry out the construction, choose 17 > 0 so small that (1 + 27)/(1 - 27) < A, 
where h is as in Lemma 4.2. Set l 1 = 1, 6, = the number 6, of Lemma 4.2, 
and k, a function satisfying the conditions (l)-(3) of Lemma 4.2. Then 
inductively choose positive numbers E, , 6, , and functions k, so that 

(4-g) 

It is possible to do this since ij(S, , k,J > c > 0 while ~(6, kj) -+ 0 as 8 -+ 0 
for j < n. We can also assume l j < 2-j. 
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Now, we claim that with 

we have that F(1 - 8,) - F(1) is about equal to l ,[k,(l - 6,) - k,(l)] and 
S(S, , F) is about equal to E,L;(S, , k,,). For 

by (4.8) and (4.9). Similarly, we have 

I F(1 - u - ~~‘(l)l >, (1 - 2Th I klu - u - km. 
Therefore, 

lim Sup I ‘(l - ‘,) - ‘tl)l > lim sup ’ - 211 I ‘,(l - ‘,) - ‘,tl)l 
n ~@n 2 F) ’ II 1 + 277 WL 9 kJ 

This completes the proof. 
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