7 research outputs found

    Plasma applications for the treatment of bean sprouts : safety, quality and nutritional assessments under aqueous and gaseous set-ups

    Get PDF
    Sprouts are particularly prone to microbial contamination due to their high nutrient content and the warm temperatures and humid conditions needed for their production. Therefore, disinfection is a crucial step in food processing as a means of preventing the transmission of bacterial, parasitic and viral pathogens. In this study, a dielectric coplanar surface barrier discharge (DCSBD) system was used for the application of cold atmospheric plasma (CAP), plasma activated water (PAW) and their combination on mung bean seeds. Overall, it was found that the combined seed treatment with direct air CAP (350 W) and air PAW had no negative impact on mung bean seed germination and growth, nor the concentration of secondary metabolites within the sprouts. These treatments also reduced the total microbial population in sprouts by 2.5 log CFU/g. This research reports for first time that aside from the stimulatory effect of plasma discharge on seed surface disinfection, sustained plasma treatment through irrigation of treated seeds with PAW can significantly enhance seedling growth. The positive outcome and further applications of different forms, of plasma i.e., gaseous and aqueous, in the agro-food industry is further supported by this research.peer-reviewe

    Aqueous and gaseous plasma applications for the treatment of mung bean seeds

    Get PDF
    Sprouts are particularly prone to microbial contamination due to their high nutrient content and the warm temperatures and humid conditions needed for their production. Therefore, disinfection is a crucial step in food processing as a means of preventing the transmission of bacterial, parasitic and viral pathogens. In this study, a dielectric coplanar surface barrier discharge (DCSBD) system was used for the application of cold atmospheric plasma (CAP), plasma activated water (PAW) and their combination on mung bean seeds. Germination assessments were performed in a test tube set-up flled with glass beads and the produced irrigation water. Overall, it was found that the combined seed treatment with direct air CAP (350W) and air PAW had no negative impact on mung bean seed germination and growth, nor the concentration of secondary metabolites within the sprouts. These treatments also reduced the total microbial population in sprouts by 2.5 log CFU/g. This research reports for frst time that aside from the stimulatory efect of plasma discharge on seed surface disinfection, sustained plasma treatment through irrigation of treated seeds with PAW can signifcantly enhance seedling growth. The positive outcome and further applications of diferent forms, of plasma i.e., gaseous and aqueous, in the agro-food industry is further supported by this research.peer-reviewe

    Imprinting of Skin/Inflammation Homing in CD4+ T Cells Is Controlled by DNA Methylation within the Fucosyltransferase 7 Gene

    No full text
    E- and P-selectin ligands (E- and P-ligs) guide effector memory T cells into skin and inflamed regions, mediate the inflammatory recruitment of leukocytes, and contribute to the localization of hematopoietic precursor cells. A better understanding of their molecular regulation is therefore of significant interest with regard to therapeutic approaches targeting these pathways. In this study, we examined the transcriptional regulation of fucosyltransferase 7 (FUT7), an enzyme crucial for generation of the glycosylated E- and P-ligs. We found that high expression of the coding gene fut7 in murine CD4(+) T cells correlates with DNA demethylation within a minimal promoter in skin/inflammation-seeking effector memory T cells. Retinoic acid, a known inducer of the gut-homing phenotype, abrogated the activation-induced demethylation of this region, which contains a cAMP responsive element. Methylation of the promoter or mutation of the cAMP responsive element abolished promoter activity and the binding of CREB, confirming the importance of this region and of its demethylation for fut7 transcription in T cells. Furthermore, studies on human CD4(+) effector memory T cells confirmed demethylation within FUT7 corresponding to high FUT7 expression. Monocytes showed an even more extensive demethylation of the FUT7 gene whereas hepatocytes, which lack selectin ligand expression, exhibited extensive methylation. In conclusion, we show that DNA demethylation within the fut7 gene controls selectin ligand expression in mice and humans, including the inducible topographic commitment of T cells for skin and inflamed sites

    Microbiota-Induced Type I Interferons Instruct a Poised Basal State of Dendritic Cells.

    No full text
    Environmental signals shape host physiology and fitness. Microbiota-derived cues are required to program conventional dendritic cells (cDCs) during the steady state so that they can promptly respond and initiate adaptive immune responses when encountering pathogens. However, the molecular underpinnings of microbiota-guided instructive programs are not well understood. Here, we report that the indigenous microbiota controls constitutive production of type I interferons (IFN-I) by plasmacytoid DCs. Using genome-wide analysis of transcriptional and epigenetic regulomes of cDCs from germ-free and IFN-I receptor (IFNAR)-deficient mice, we found that tonic IFNAR signaling instructs a specific epigenomic and metabolic basal state that poises cDCs for future pathogen combat. However, such beneficial biological function comes with a trade-off. Instructed cDCs can prime T cell responses against harmless peripheral antigens when removing roadblocks of peripheral tolerance. Our data provide fresh insights into the evolutionary trade-offs that come with successful adaptation of vertebrates to their microbial environment
    corecore