132 research outputs found

    Adenosine A1 Receptor-Mediated Synaptic Depression in the Developing Hippocampal Area CA2

    Get PDF
    Immunolabeling for adenosine A1 receptors (A1Rs) is high in hippocampal area CA2 in adult rats, and the potentiating effects of caffeine or other A1R-selective antagonists on synaptic responses are particularly robust at Schaffer collateral synapses in CA2. Interestingly, the pronounced staining for A1Rs in CA2 is not apparent until rats are 4 weeks old, suggesting that developmental changes other than receptor distribution underlie the sensitivity of CA2 synapses to A1R antagonists in young animals. To evaluate the role of A1R-mediated postsynaptic signals at these synapses, we tested whether A1R agonists regulate synaptic transmission at Schaffer collateral inputs to CA2 and CA1. We found that the selective A1R agonist CCPA caused a lasting depression of synaptic responses in both CA2 and CA1 neurons in slices obtained from juvenile rats (P14), but that the effect was observed only in CA2 in slices prepared from adult animals (~P70). Interestingly, blocking phosphodiesterase activity with rolipram inhibited the CCPA-induced depression in CA1, but not in CA2, indicative of robust phosphodiesterase activity in CA1 neurons. Likewise, synaptic responses in CA2 and CA1 differed in their sensitivity to the adenylyl cyclase activator, forskolin, in that it increased synaptic transmission in CA2, but had little effect in CA1. These findings suggest that the A1R-mediated synaptic depression tracks the postnatal development of immunolabeling for A1Rs and that the enhanced sensitivity to antagonists in CA2 at young ages is likely due to robust adenylyl cyclase activity and weak phosphodiesterase activity rather than to enrichment of A1Rs

    New insights into the regulation of synaptic plasticity from an unexpected place:Hippocampal area CA2

    Get PDF
    The search for molecules that restrict synaptic plasticity in the brain has focused primarily on sensory systems during early postnatal development, as critical periods for inducing plasticity in sensory regions are easily defined. The recent discovery that Schaffer collateral inputs to hippocampal area CA2 do not readily support canonical activity-dependent long-term potentiation (LTP) serves as a reminder that the capacity for synaptic modification is also regulated anatomically across different brain regions. Hippocampal CA2 shares features with other similarly "LTP-resistant" brain areas in that many of the genes linked to synaptic function and the associated proteins known to restrict synaptic plasticity are expressed there. Add to this a rich complement of receptors and signaling molecules permissive for induction of atypical forms of synaptic potentiation, and area CA2 becomes an ideal model system for studying specific modulators of brain plasticity. Additionally, recent evidence suggests that hippocampal CA2 is instrumental for certain forms of learning, memory, and social behavior, but the links between CA2-enriched molecules and putative CA2-dependent behaviors are only just beginning to be made. In this review, we offer a detailed look at what is currently known about the synaptic plasticity in this important, yet largely overlooked component of the hippocampus and consider how the study of CA2 may provide clues to understanding the molecular signals critical to the modulation of synaptic function in different brain regions and across different stages of development

    Long-term depression-associated signaling is required for an in vitro model of NMDA receptor-dependent synapse pruning

    Get PDF
    AbstractActivity-dependent pruning of synaptic contacts plays a critical role in shaping neuronal circuitry in response to the environment during postnatal brain development. Although there is compelling evidence that shrinkage of dendritic spines coincides with synaptic long-term depression (LTD), and that LTD is accompanied by synapse loss, whether NMDA receptor (NMDAR)-dependent LTD is a required step in the progression toward synapse pruning is still unknown. Using repeated applications of NMDA to induce LTD in dissociated rat neuronal cultures, we found that synapse density, as measured by colocalization of fluorescent markers for pre- and postsynaptic structures, was decreased irrespective of the presynaptic marker used, post-treatment recovery time, and the dendritic location of synapses. Consistent with previous studies, we found that synapse loss could occur without apparent net spine loss or cell death. Furthermore, synapse loss was unlikely to require direct contact with microglia, as the number of these cells was minimal in our culture preparations. Supporting a model by which NMDAR-LTD is required for synapse loss, the effect of NMDA on fluorescence colocalization was prevented by phosphatase and caspase inhibitors. In addition, gene transcription and protein translation also appeared to be required for loss of putative synapses. These data support the idea that NMDAR-dependent LTD is a required step in synapse pruning and contribute to our understanding of the basic mechanisms of this developmental process

    Perineuronal Nets Suppress Plasticity of Excitatory Synapses on CA2 Pyramidal Neurons

    Get PDF
    Long-term potentiation of excitatory synapses on pyramidal neurons in the stratum radiatum rarely occurs in hippocampal area CA2. Here, we present evidence that perineuronal nets (PNNs), a specialized extracellular matrix typically localized around inhibitory neurons, also surround mouse CA2 pyramidal neurons and envelop their excitatory synapses. CA2 pyramidal neurons express mRNA transcripts for the major PNN component aggrecan, identifying these neurons as a novel source for PNNs in the hippocampus. We also found that disruption of PNNs allows synaptic potentiation of normally plasticity-resistant excitatory CA2 synapses; thus, PNNs play a role in restricting synaptic plasticity in area CA2. Finally, we found that postnatal development of PNNs on CA2 pyramidal neurons is modified by early-life enrichment, suggesting that the development of circuits containing CA2 excitatory synapses are sensitive to manipulations of the rearing environment

    Caffeine-induced synaptic potentiation in hippocampal CA2 neurons

    Get PDF
    Caffeine enhances cognition, but even high non-physiological doses have modest effects on synapses. A 1 adenosine receptors (A 1 Rs) are antagonized by caffeine and are most highly enriched in hippocampal CA2, which has not been studied in this context. We found that physiological doses of caffeine in vivo or A 1 R antagonists in vitro induced robust, long-lasting potentiation of synaptic transmission in rat CA2 without affecting other regions of the hippocampus

    High sensitive TROponin levels In Patients with Chest pain and kidney disease:a multicenter registry: The TROPIC study

    Get PDF
      Background: Accuracy of high sensitive troponin (hs-cTn) to detect coronary artery disease (CAD) in patients with renal insufficiency is not established. The aim of this study was to evaluate the prognostic role of hs-cTn T and I in patients with chronic kidney disease (CKD). Methods: All consecutive patients with chest pain, renal insufficiency (eGFR < 60 mL/min/1.73 m2) and high sensitive troponin level were included. The predictive value of baseline and interval troponin (hs-cTnT and hs-cTnI) for the presence of CAD was assessed. Results: One hundred and thirteen patients with troponin I and 534 with troponin T were included, with 95 (84%) and 463 (87%) diagnosis of CAD respectively. There were no differences in clinical, procedural and outcomes between the two assays. For both, baseline hs-cTn values did not differ be­tween patients with/without CAD showing low area under the curve (AUC). For interval levels, hs-cTnI was significantly higher for patients with CAD (0.2 ± 0.8 vs. 8.9 ± 4.6 ng/mL; p = 0.04) and AUC was more accurate for troponin I than hs-cTnT (AUC 0.85 vs. 0.69). Peak level was greater for hs-cTnI in patients with CAD or thrombus (0.4 ± 0.6 vs. 15 ± 20 ng/mL; p = 0.02; AUC 0.87: 0.79–0.93); no differences were found for troponin T assays (0.8 ± 1.5 vs. 2.2 ± 3.6 ng/mL; p = 1.7), with lower AUC (0.73: 0.69–0.77). Peak troponin levels (both T and I) independently predicted all cause death at 30 days. Conclusions: Patients with CKD presenting with altered troponin are at high risk of coronary disease. Peak level of both troponin assays predicts events at 30 days, with troponin I being more accurate than troponin T. (Cardiol J 2017; 24, 2: 139–150

    Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice

    Get PDF
    Obsessive-compulsive disorder (OCD) is an anxiety-spectrum disorder characterized by persistent intrusive thoughts (obsessions) and repetitive actions (compulsions). Dysfunction of cortico-striato-thalamo-cortical circuitry is implicated in OCD, though the underlying pathogenic mechanisms are unknown. SAP90/PSD95-associated protein 3 (SAPAP3) is a postsynaptic scaffolding protein at excitatory synapses that is highly expressed in the striatum. Here we show that mice with genetic deletion of SAPAP3 exhibit increased anxiety and compulsive grooming behavior leading to facial hair loss and skin lesions; both behaviors are alleviated by a selective serotonin reuptake inhibitor. Electrophysiological, structural, and biochemical studies of SAPAP3 mutant mice reveal defects in cortico-striatal synapses. Furthermore, lentiviral-mediated selective expression of SAPAP3 in the striatum rescues the synaptic and behavioral defects of SAPAP3 mutant mice. These findings demonstrate a critical role for SAPAP3 at cortico-striatal synapses and emphasize the importance of cortico-striatal circuitry in OCD-like behaviors

    Optimized Method for Robust Transcriptome Profiling of Minute Tissues Using Laser Capture Microdissection and Low-Input RNA-Seq

    No full text
    Obtaining high quality RNA from complex biological tissues, such as the brain, is needed for establishing high-fidelity cell-type specific transcriptomes. Although combining genetic labeling techniques with laser capture microdissection (LCM) is generally sufficient, concerns over RNA degradation and limited yields call into question results of many sequencing studies. Here we set out to address both of these issues by: (1) developing a fluorescence-assisted LCM protocol that yields high quality RNA from fresh-frozen tissues; and (2) determining a suitable RNA-Seq library generation method for limited amounts of RNA (1–5 ng total RNA). The latter focused on comparing commercially available kits able to produce libraries of sufficient concentration and complexity while limiting PCR amplification biases. We find that high quality RNA (RNA integrity number, RIN, >9) of sufficient concentration can be isolated from laser-captured material from thinly-sectioned tissues when digestion time and temperature are minimized. Furthermore, we found that library generation approaches that retain ribosomal RNA (rRNA) through cDNA library generation required fewer cycles of PCR, minimizing bias in the resulting libraries. Lastly, end stage depletion of rRNA prior to sequencing enriches for target RNAs, thereby increasing read depth and level of gene detection while decreasing sequencing costs. Here we describe our protocol for generating robust RNA-Seq libraries from laser-captured tissue and demonstrate that with this method, we obtain samples with RNA quality superior to the current standard in the LCM field, and show that low-input RNA-Seq kits that minimize PCR bias produce high fidelity sequencing metrics with less variability compared to current practices

    Hippocampus and Entorhinal Cortex Recruit Cholinergic and NMDA Receptors Separately to Generate Hippocampal Theta Oscillations

    No full text
    Summary: Although much progress has been made in understanding type II theta rhythm generation under urethane anesthesia, less is known about the mechanisms underlying type I theta generation during active exploration. To better understand the contributions of cholinergic and NMDA receptor activation to type I theta generation, we recorded hippocampal theta oscillations from freely moving mice with local infusion of cholinergic or NMDA receptor antagonists to either the hippocampus or the entorhinal cortex (EC). We found that cholinergic receptors in the hippocampus, but not the EC, and NMDA receptors in the EC, but not the hippocampus, are critical for open-field theta generation and Y-maze performance. We further found that muscarinic M1 receptors located on pyramidal neurons, but not interneurons, are critical for cholinergic modulation of hippocampal synapses, theta generation, and Y-maze performance. These results suggest that hippocampus and EC neurons recruit cholinergic-dependent and NMDA-receptor-dependent mechanisms, respectively, to generate theta oscillations to support behavioral performance. : Gu et al. find that the entorhinal cortex and hippocampus recruit NMDA-receptor-dependent and cholinergic-dependent mechanisms, respectively, to generate hippocampal theta oscillations in freely moving mice. Muscarinic M1 receptors on pyramidal neurons are important for theta generation, providing potential cellular mechanisms underlying theta generation. Keywords: theta, hippocampus, entorhinal cortex, NMDA receptor, cholinergic receptor, muscarinic, medial septum, Y-maz
    • …
    corecore