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Activity-dependent pruning of synaptic contacts plays a critical role in shaping neuronal circuitry in
response to the environment during postnatal brain development. Although there is compelling evidence
that shrinkage of dendritic spines coincides with synaptic long-term depression (LTD), and that LTD is
accompanied by synapse loss, whether NMDA receptor (NMDAR)-dependent LTD is a required step in
the progression toward synapse pruning is still unknown. Using repeated applications of NMDA to induce
LTD in dissociated rat neuronal cultures, we found that synapse density, as measured by colocalization of
fluorescent markers for pre- and postsynaptic structures, was decreased irrespective of the presynaptic
marker used, post-treatment recovery time, and the dendritic location of synapses. Consistent with pre-
vious studies, we found that synapse loss could occur without apparent net spine loss or cell death.
Furthermore, synapse loss was unlikely to require direct contact with microglia, as the number of these
cells was minimal in our culture preparations. Supporting a model by which NMDAR-LTD is required for
synapse loss, the effect of NMDA on fluorescence colocalization was prevented by phosphatase and cas-
pase inhibitors. In addition, gene transcription and protein translation also appeared to be required for
loss of putative synapses. These data support the idea that NMDAR-dependent LTD is a required step
in synapse pruning and contribute to our understanding of the basic mechanisms of this developmental
process.
Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

In many brain regions, synapse number initially increases and
subsequently decreases over the course of postnatal development
(Rakic, Bourgeois, Eckenhoff, Zecevic, & Goldman-Rakic, 1986).
These changes in synapse number represent a period of time dur-
ing which the rate of synapse formation exceeds that of pruning,
followed by a net loss of synapses as the rate of pruning overtakes
that of synapse formation (Alvarez & Sabatini, 2007; Chen &
Regehr, 2000; Glantz, Gilmore, Hamer, Lieberman, & Jarskog,
2007; Holtmaat et al., 2005; Huttenlocher, 1979). With increasing
age, the turnover rate of synapses, usually inferred from dendritic
spine instability, declines in several brain regions (Elston, Oga, &
Fujita, 2009; Holtmaat et al., 2005; Qiao et al., 2016). The loss of
synapses on a large scale may be one way neuronal circuits are
sculpted in response to experience. During early postnatal and
adolescent development, this experience- and activity-dependent
process is required for the refinement and proper functioning of
neuronal circuits; disruption of synapse pruning can lead to dys-
function underlying some neurodevelopmental and psychiatric
disorders (Kang et al., 2012; Kim et al., 2013; Penzes, Buonanno,
Passafaro, Sala, & Sweet, 2013). For example, many disorders in
the autism spectrum are thought to be caused by pruning deficits
(Auerbach, Osterweil, & Bear, 2011; Pfeiffer et al., 2010; Tang et al.,
2014). Conversely, schizophrenia is often accompanied by exces-
sive pruning of synaptic connections, particularly in prefrontal cor-
tical areas (Calabrò, Drago, Sidoti, Serretti, & Crisafulli, 2015;
Glantz & Lewis, 2000; McGlashan & Hoffman, 2000; Selemon &
Zecevic, 2015). In addition, a gene recently identified as a risk fac-
tor for schizophrenia, C4, encoding complement protein C4, has
also been linked to synapse elimination in the lateral geniculate
nucleus (Sekar et al., 2016).

Supporting the idea that synapse pruning requires neuronal
activity, and that it is not simply due to a lack of neuronal activity,
ceptor-
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is evidence showing that loss of dendritic spines and functional
connections is often greater with more activity in the form of visual
experience (Elston et al., 2009; Reiter & Stryker, 1988; Rittenhouse,
Shouval, Paradiso, & Bear, 1999). Although the precise mechanisms
underlying activity-dependent synapse elimination in the develop-
ing brain remain unknown, the idea that repeated synapse weak-
ening by long-term depression (LTD) is a trigger for this synapse
loss has been strengthened with experimental support
(Bastrikova, Gardner, Reece, Jeromin, & Dudek, 2008; Becker,
Wierenga, Fonseca, Bonhoeffer, & Nägerl, 2008; Coleman et al.,
2010; Wiegert & Oertner, 2013; Yoon, Smith, Heynen, Neve, &
Bear, 2009). Interestingly, although spine shrinkage accompanies
LTD, the two phenomena can be dissociated, suggesting that the
same initiating events (i.e., NMDA receptor activation) can trigger
both distinct signaling pathways (He, Lee, Song, Kanold, & Lee,
2011; Oh, Hill, & Zito, 2013; Zhou, Homma, & Poo, 2004). Similarly,
spine loss does not always accompany synapse loss, suggesting
that the two processes might occur through independent mecha-
nisms (Bastrikova et al., 2008; Becker et al., 2008). Some evidence
suggests that synapses on the smallest spines are most susceptible
to separation (Bastrikova et al., 2008) (but see Wiegert & Oertner,
2013).

NMDA receptor-dependent LTD (NMDAR-LTD) can be induced
in a variety of experimental models, including in vivo, acutely pre-
pared hippocampal slices, hippocampal slices maintained in cul-
tures, as well as dissociated cortical neurons (Bastrikova et al.,
2008; Carroll, Lissin, von Zastrow, Nicoll, & Malenka, 1999;
Dudek & Bear, 1992; Heynen, Abraham, & Bear, 1996). Most typi-
cally, LTD is induced with low frequency (0.5–3 Hz) afferent stim-
ulation (Dudek & Bear, 1992), but it can also be induced with
application of NMDA (chemLTD) (Kameyama, Lee, Bear, &
Huganir, 1998; Lee, Kameyama, Huganir, & Bear, 1998). NMDAR-
dependent LTD requires serine-threonine phosphatase and caspase
activity (Li et al., 2010; Mulkey, Herron, & Malenka, 1993), as well
as mRNA and/or protein synthesis (Kauderer & Kandel, 2000;
Sajikumar & Frey, 2003), however it is distinct from mGluR-
dependent LTD, which requires protein synthesis but not necessar-
ily phosphatase activity (Casimiro et al., 2011; Fitzjohn, Kingston,
Lodge, & Collingridge, 1999; Huber, Kayser, & Bear, 2000; Huber,
Roder, & Bear, 2001). Both types of synaptic depression have been
shown to cause dendritic spine shrinkage/loss (He et al., 2011;
Hsieh et al., 2006; Hu et al., 2014; Nägerl, Eberhorn, Cambridge,
& Bonhoeffer, 2004; Oh et al., 2013; Wiegert & Oertner, 2013;
Zhou et al., 2004), axonal bouton shrinkage/retraction (Becker
et al., 2008), and/or changes in miniature synaptic currents
(Carroll et al., 1999; Casimiro et al., 2011; Pfeiffer et al., 2010).
The process of experimentally-induced synapse loss can take place
over a wide range of timeframes, on the order of minutes/hours
(Bastrikova et al., 2008; Becker et al., 2008) to days/weeks
(Egashira et al., 2010; Hasegawa, Sakuragi, Tominaga-Yoshino, &
Ogura, 2015; Kamikubo et al., 2006; Shinoda, Kamikubo,
Egashira, Tominaga-Yoshino, & Ogura, 2005; Shinoda, Tanaka,
Tominaga-Yoshino, & Ogura, 2010; Wiegert & Oertner, 2013). We
hypothesized that the specific signaling cascades that are required
for NMDAR-LTD can initiate synapse loss (separation of pre- and
post-synaptic structures). This is an important point, as LTD-like
mechanisms offer the advantage of synapse specificity, similar to
that of LTP (Dudek & Bear, 1992). Interestingly, biasing plasticity
toward LTP with active CaMKII reduces synaptic contact turnover
(Pratt, Taft, Burbea, & Turrigiano, 2008), suggesting that LTP and
LTD counter each other in terms of synapse stability.

To begin to address whether LTD is a mechanistic prerequisite
for synapse pruning, we established an in vitro model of LTD-
induced synapse loss by activation of NMDA receptors. We also
investigated whether pharmacological inhibition of LTD-related
Please cite this article in press as: Henson, M. A., et al. Long-term depression
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signaling can prevent synapse loss in a model of synapse pruning
in cultured rat cortical neurons.

2. Materials and methods

2.1. Animal use

The protocols for animal use in this study were in accordance
with the National Institutes of Health Guide for the Care and Use
of Laboratory Animals and were approved by the institution’s Ani-
mal Care and Use Committee.

2.2. Reagents

The following reagents were used in this study: N-methyl-D-
aspartic acid (Sigma, M-3262), FK506 (Tocris, 3631), calyculin A
(LC Labs, C-3987), okadaic acid (LC Labs, O-5857), fostriecin (Santa
Cruz Biotechnology, sc-202160), actinomycin D (Sigma, A-9415),
anisomycin (Sigma, A-5862), cycloheximide (Sigma), Z-DEVD-
FMK (Tocris, 2166), natural mouse laminin (Life Technologies,
23017-015), fetal bovine serum (HyClone, SH30910), poly-D-
lysine (Sigma, P6407), DME medium (Life Technologies, 11995-
065), Neurobasal medium (Life Technologies, 21103-049), B27
Supplement (Life Technologies, 17504-044), GlutaMAX (Life Tech-
nologies, 35050-061), 5-fluoro-20deoxyuridine (FUDR; Sigma,
F0503), uridine (Sigma, U3003), Hanks Balanced Salt Solution
(HBSS; Invitrogen 14025076 and 14175079), bovine serum albu-
min (BSA; Sigma, A7030), DMSO (Sigma, D2650), paraformalde-
hyde (Electron Microscopy Sciences, 157-8), propidium iodide
(Sigma, P-4170), and Prolong Gold Antifade Mounting Medium
(Invitrogen, P36934).

Fostriecin, cycloheximide, and NMDA were dissolved in water.
Calyculin A, okadaic acid, FK506, z-DEVD-FMK, actinomycin D
and anisomycin were dissolved in DMSO. The final concentration
of DMSO was no more than 0.1%. All of the above were prepared
as concentrated stock solutions, stored at �20 �C, diluted to their
indicated final concentrations in culture medium, and allowed to
equilibrate in a 37 �C incubator for 1 h before each experiment. A
modified Sindbis virus encapsulating a gene for eGFP was prepared
by NIEHS Viral Vector Core Laboratory and stored at �80 �C as con-
centrated stocks until ready to use (Jeromin, Yuan, Frick, Pfaffinger,
& Johnston, 2003).

2.3. Preparation of cultured neurons

Mixed neuronal cultures were prepared from embryonic day 18
Sprague-Dawley rat brains. Hippocampal and cortical tissue pieces
were mechanically disrupted by gentle trituration in HBSS,
washed, and resuspended in HBSS. Dissociated neurons were pla-
ted at low-density (�80,000) on poly-D-lysine (25 lg/ml)- and
laminin (2 mg/ml)-coated 12 mm glass coverslips or MatTek dishes
in DMEM with 10% fetal bovine serum and grown at 37 �C. Half of
the medium was replaced 3–4 days later, and then every 3–4 days
with serum-free Neurobasal medium plus 2% NS21 made in-house
(Chen et al., 2008) or B27 supplement (Life Technologies; in a lim-
ited number of experiments), and 1% GlutaMAX. FUDR was added
at 4 days in vitro (DIV) to inhibit proliferation of non-neuronal
cells. Microglia cultures prepared as described by Harry, Tyler,
d’Hellencourt, Tilson, and Maier (2002) were generously provided
by C. McPherson.

2.4. Electrophysiological recordings

Whole-cell patch-clamp recordings were performed on
either unlabeled neurons or those expressing eGFP. Neurons were
-associated signaling is required for an in vitro model of NMDA receptor-
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perfused at 1 ml min�1 at room temperature in ACSF consisting of
124 mM NaCl, 2.5 mM KCl, 2 mM MgCl2, 2 mM CaCl2, 1.25 mM
NaH2PO4, 26 mM NaHCO3, 17 mM D-glucose, 0.5 mM picrotoxin
and 0.001 mM TTX. Patch electrodes (3–7 MX) were filled with
120 mM potassium gluconate, 10 mM KCl, 3 mM MgCl2, 0.5 mM
EGTA, 40 mM HEPES, 2 mM Na2ATP, 0.3 mM NaGTP, with pH
adjusted to 7.2 by NaOH. Neurons were voltage clamped at
�60 mV and mEPSCs recorded. mEPSCs were detected and ana-
lyzed using the Mini Analysis program (version 6.0.7, Synaptosoft).
Series resistance was monitored throughout the experiments and
data from those cells with >20% change were excluded from the
analyses. Baseline recordings were acquired for 3 min from cul-
tured neurons on coverslips (18–22 DIV), followed by 20 lM
NMDA with 20 lM glycine in artificial cerebrospinal fluid (ACSF)
for 8 min (Beattie et al., 2000). Ten minutes after washout, minia-
ture EPSCs were recorded for 3 additional minutes from the same
cell for comparison to the baseline recordings.

2.5. Viral infection

Dissociated cultures were infected with modified Sindbis-eGFP
(Jeromin et al., 2003) at 18–20 DIV, as this range was long enough
for the neurons to develop mature spines (Boyer, Schikorski, &
Stevens, 1998; Dailey & Smith, 1996; Papa, Bundman,
Greenberger, & Segal, 1995) (Fig. 1A and B). Cells on coverslips
were treated with virus diluted in conditioned media according
to a series of pilot studies in which distribution of neurons express-
ing GFP was compared and the chosen working dilution resulted in
neuronal GFP expression across roughly 25–50% of the coverslip by
16–20 h post-infection, the time of the experiments. Antibodies
against eGFP were used in addition to maximize fluorescent label-
ing of dendritic spines (described below).
2.6. Immunocytochemistry

Staining of putative synapses was generally performed as
described previously (Glynn & McAllister, 2006). Two or four hours
following experimental treatment, cells were fixed in warm 4%
paraformaldehyde (PFA)/2.5% sucrose in phosphate-buffered saline
(PBS) for 10 min and made permeable with 0.2% Triton X-100 in
PBS for 5 min. After blocking in 5% BSA/PBS for 30 min at room
temperature, cells were stained overnight at 4 �C with antibodies
diluted in blocking buffer, washed 3 times in PBS, stained with
the corresponding AlexaFluor 488, 568, or 633 secondary antibod-
ies for 1 h at room temperature, and washed 3 times in PBS before
mounting on slides with Prolong Gold Antifade Mounting Medium
(Invitrogen). The following primary antibodies were used at the
respective dilutions: chicken anti-GFP (1:40,000, Gene-Tex,
GTX13970), rabbit anti-synapsin 1 (1:1000, Millipore, AB1543P),
rabbit anti-bassoon (1:500, Cell Signaling, D63B6), mouse anti-
PSD95 (1:250, NeuroMab, 75-028), chicken anti-MAP2 (1:2000,
Abcam, ab5392), rabbit anti-Iba1 (1:1000, Wako). AlexaFluor goat
anti-mouse 488, goat anti-rabbit 568, and goat anti-chicken 633
secondary antibodies (Invitrogen) were used at 1:500 dilutions.
To confirm specificity of staining, omission of primary antibody
was used as a negative control and showed only negligible
staining.

2.7. Imaging and analysis

Pyramidal neurons with a spiny appearance, in contrast to the
non-spiny type with relatively unbranched dendrites that are
thought to belong to GABAergic neurons (Benson, Watkins,
Steward, & Banker, 1994), were chosen specifically to study puta-
tive excitatory glutamatergic synapses. Fluorescent images from
Please cite this article in press as: Henson, M. A., et al. Long-term depression-
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neuronal cultures were acquired with a Zeiss LSM 510-UV meta
confocal microscope (Carl Zeiss Inc, Oberkochen, Germany) using
either a Plan-NEOFLUAR 40X/1.3 Oil DIC or a Plan-APOCHROMAT
63X/1.4 Oil DIC objective. Confocal images were acquired and then
an optical zoom of 4 was applied for viewing synapses in high-
resolution z-stacks. Z-stack images were collapsed into 2D maxi-
mum intensity projections before analyzing fluorescence of den-
drites using Zen 2010 (Zeiss) for cropping, MetaMorph software
(Molecular Devices) for counting, and ImageJ (NIH) for display
adjustment. PSD-95- or GFP-labeled spines visible in the green
channel were counted manually, followed by visualization of red
puncta (synapsin- or bassoon-labeled presynaptic terminals) that
were directly adjacent or otherwise contacting spines or the den-
dritic shafts. Thus, putative synapses were defined as colocalized
presynaptic synapsin or bassoon (red), and postsynaptic GFP or
PSD-95 (green) fluorescence. Synapses were counted along 20-
lm traced segments of dendrites, with proximal dendritic
synapses measured 20–50 lm from the soma, and distal synapses
defined as those >100 lm from the soma. Note that fluorescence
colocalization here indicates only that the two structures (pre-
and postsynaptic) are closer than can be resolved in our conditions.
Mean numbers of synapses in each condition were normalized to
the appropriate vehicle- or mock-treated controls within experi-
ments, then grouped and averaged across experiments. A mini-
mum of three neurons per condition was imaged in each
experiment. No attempt was made to quantify shape or size of
spines. Slides were coded to ensure blind acquisition and analysis
of images.

In some experiments, neurons were treated with MitoTracker
Red (Invitrogen, 1 nM in DMSO) to reveal mitochondria, and were
imaged using the structured illumination technique on a Zeiss
Elyra PS.1 super-resolution microscope (Carl Zeiss Inc, Oberkochen,
Germany). A Plan-APOCHROMAT 63X/1.4 Oil DIC objective was
used to collect Z-stack images, which were subsequently processed
with the SIM processing module of Zeiss Zen 2012.

2.8. Experimental design

To investigate the signaling mechanisms underlying synapse
pruning, we first sought to establish an appropriate in vitro model
of LTD that also induces synaptic elimination. Three-week-old cul-
tured neurons exhibit highly-branched dendrite morphology, with
many fully decorated with mature spines, thus providing an ideal
timeframe for imaging synapses (Boyer et al., 1998; Dailey &
Smith, 1996; Papa et al., 1995). Neurons fixed after virus-eGFP
infection, and labeled with validated markers for pre- and post-
synaptic structures were used as a measure of synapse density
(Micheva, Busse, Weiler, O’Rourke, & Smith, 2010) (Fig. 1A). For
example, staining with antibodies raised against synapsin in the
presynaptic terminal of Neuron A (red) is apposed to the GFP-
labeled spines and dendrite of postsynaptic Neuron B (green)
(Fig. 1B). Consistent with many studies that established the phar-
macological induction of LTD (chemLTD) in cultured neurons
(Beattie et al., 2000; Carroll et al., 1999; Ehlers, 2000; Lee, Liu,
Wang, & Sheng, 2002; Lu et al., 2001; Snyder et al., 2005), we repli-
cated a previous report that a brief exposure to NMDA can reduce
the frequency of miniature excitatory synaptic currents (Beattie
et al., 2000) (Fig. 1C–F), which is one indicator of synaptic depres-
sion. This NMDA treatment induced a reduction in mEPSC fre-
quency but not amplitude (Fig. 1D: Mini frequency recordings
from n = 10 cells, 3 biological samples, and shown as a percentage
of the pre-drug baseline; frequency 70.94 ± 8.89%, p = 0.0097;
amplitude 111.5 ± 10.6%, p = 0.305), consistent with previous
reports for chemLTD in culture preparations (Beattie et al., 2000;
Lissin, Carroll, Nicoll, Malenka, & von Zastrow, 1999). Input
resistances were unchanged, ruling out overt breakdown of the
associated signaling is required for an in vitro model of NMDA receptor-
://dx.doi.org/10.1016/j.nlm.2016.10.013
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Fig. 1. Experimental design. (A) Dissociated neuronal cultures at 18–22 days DIV have fully-branched dendrites studded with mature spines that can be visualized with
fluorescent markers using confocal microscopy, and the changes in synapse density can then be quantified. Scale bar, 20 lm. (B) High magnification confocal images of
dendrites with spiny synapses. Synapsin antibody staining (red) in the presynaptic terminal of Neuron A is apposed to the GFP-labeled spines and dendrite (green) of
postsynaptic Neuron B. NMDA treatment of dissociated neuronal cultures causes a decrease in frequency of miniature EPSCs. (C) Representative traces from mEPSCs recorded
from cultured neurons pre- and post-NMDA treatment. (D) Data from cells, normalized to baseline, after NMDA treatment shows a decrease in mEPSC frequency, but no
change in amplitude (n = 10 cells, 3 biological samples). Paired analyses of mEPSC recordings from individual cells pre-NMDA and post-NMDA treatments: (E) frequency and
(F) amplitude. Some points/error bars are obscured by overlying symbols with similar values. *pfreq = 0.031. (G) Schematic diagram of experimental timeline showing that
dissociated neurons were cultured for 21 days, infected with a modified Sindbis-eGFP to fill some of the cells, treated twice with the LTD-inducing drug, NMDA (20 lM for
3 min), allowed to recover two or four hours, and fixed. Cells were then stained for synapse markers (immunofluorescence), imaged, and putative synapse numbers
determined. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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membrane (112.92 ± 7.65%, p = 0.38). Thus, brief, low-dose NMDA
application to our mixed cortical cultures reduces excitatory trans-
mission as reported previously (Fig. 1E and F: mean ± SEM of
paired analyses of recordings from individual cells pre-NMDA
and post-NMDA treatments; frequencypre 0.71 ± 0.13, amplitudepre
23.33 ± 3.28 pA; frequencypost 0.50 ± 0.12, amplitudepost 24.66 ± 3.35
pA; n = 10 cells; ⁄pfreq = 0.031). Although this treatment included
Please cite this article in press as: Henson, M. A., et al. Long-term depression
dependent synapse pruning. Neurobiology of Learning and Memory (2016), http
added glycine, together with the NMDA in ACSF, we note that
the Neurobasal media used in the imaging experiments contains
0.4 mM glycine. Therefore, additional glycine was not included in
subsequent experiments. To summarize, our experimental design
entailed stimulating neurons at �21 DIV with NMDA to induce
synaptic depression and determining the number of putative
synapses on neurons expressing GFP (Fig. 1G).
-associated signaling is required for an in vitro model of NMDA receptor-
://dx.doi.org/10.1016/j.nlm.2016.10.013
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2.9. Pharmacological treatments

To pharmacologically induce LTD (chemLTD) for subsequent
image analysis of GFP-expressing neurons, cultures on coverslips
(�21 DIV) were either mock-treated with culture medium only,
or treated with 20 lM NMDA dissolved in culture medium, which
was removed after 3 min. Cells were then returned to NMDA-free
conditioned medium for 1 h and were subjected to a second treat-
ment, unless indicated (Fig. 1G). Cells were exposed to pharmaco-
logical inhibitors 10–45 min prior to and during NMDA addition. In
cases where inhibitors were dissolved in DMSO as vehicle, the
vehicle alone was used in the control medium. To inhibit protein
phosphatase activity, cultures were pre-incubated with serine-
threonine phosphatase inhibitors at concentrations selected from
published reports, and only those concentrations that did not cause
overt neuronal toxicity (blebbing), as assessed in low magnifica-
tion images, or detachment (floating cells), were used in further
studies: calyculin A (CA, 1–5 nM,10 min prior to NMDA), okadaic
acid (OA, 1–20 nM, 10 min prior to NMDA), fostriecin (fos, 10–
100 nM, 10 min prior to NMDA), or FK506 (10–100 nM, 20 min
prior to NMDA)]. To inhibit mRNA and protein synthesis, we used
actinomycin D (actino, 10 nM–1 lM, 20 min prior to NMDA) for
transcription inhibition, and anisomycin (aniso, 1–20 lM, 20 min
prior to NMDA), or cycloheximide (CHX, 60 lM, 20 min prior to
NMDA) for translation inhibition. Similarly, for caspase-3 inhibi-
tion, cultures were incubated with z-DEVD-FMK (DEVD, 10 lM,
45 min prior to NMDA), as described (Erturk, Wang, & Sheng,
2014). Enzyme activity was not measured. Neuronal cell death
was assessed by incubating cultured neurons for 30 min to 1 h at
37 �C in propidium iodide (PI; 5 lg/ml)-containing media before
imaging and analysis (Lau, Cui, & Tymianski, 2007). PI uptake by
nuclei was visualized at 20� magnification using a Zeiss Axio-
Observer Z1 epi-fluorescence microscope. Images were then
imported into MetaMorph image analysis software (Molecular
Devices) where the ‘Count Nuclei’ application was used to count
the total number of PI-positive cells.

2.10. Statistical analysis

All experiments were performed on at least three independent
neuronal cultures (biological samples) prepared from separate lit-
ters of pups. Error bars represent standard errors of the means
(SEM). Statistical evaluations were performed using either
unpaired student t-tests, or one-way analyses of variance (ANO-
VAs) followed by appropriate between-group comparisons (Graph-
pad Prism 6 and InStat, San Diego, CA). All levels of significance
represent two-tailed values. Significance was placed at p < 0.05.

3. Results

3.1. NMDA induces synapse loss in culture

Repeated periods of LTD-inducing stimulation can be accompa-
nied by synapse loss (Bastrikova et al., 2008; Shinoda et al., 2010),
and bath application of NMDA can induce synaptic depression in
slices and in culture preparations (Atkins, Davare, Oh, Derkach, &
Soderling, 2005; Beattie et al., 2000; Carroll et al., 1999; He et al.,
2011; Kameyama et al., 1998; Kamikubo et al., 2006; Lee et al.,
1998; Lu et al., 2001), as well as a rapid loss of dendritic spines
(Halpain, Hipolito, & Saffer, 1998). We therefore tested whether
repeated applications of NMDA would influence the number of
synaptic connections in dissociated cultures by determining the
density of fluorescently-labeled presynaptic terminals (synapsin
Micheva, Busse, Weiler, O’Rourke, & Smith, 2010) co-localized with
dendritic spines of fluorescently-labeled neurons (GFP Jeromin
Please cite this article in press as: Henson, M. A., et al. Long-term depression-
dependent synapse pruning. Neurobiology of Learning and Memory (2016), http
et al., 2003; Fig. 2A). We found that brief applications of NMDA
(20 lM for 3 min) induced a lasting decrease in the number of
putative synaptic contacts (Fig. 2B1). Two applications of NMDA
were required for reliable detection of synapse loss, though, as
one application induced a much smaller loss that was less consis-
tent across individual dendrites (Fig. 2B2). The reduction in
synapse density was apparent at two hours post-NMDA treatment
and did not reverse or progress further at four hours post-
treatment (ANOVA; two hours: F(2, 17) = 10.38; p = 0.0011; n = 20
biological samples; four hours: F(2, 9) = 14.81; p = 0.0014; n = 12
biological samples); or normalized to same day mock-treatment
branches in control coverslips (ANOVA; two hours: F(2,
222) = 34.15; p < 0.0001; n = 225 dendritic segments; four hours:
F(2, 277) = 38.92; p < 0.0001; n = 280 dendritic segments). Thus, we
chose to focus our efforts to measure synapse changes on the
two-hour post-recovery timeframe.

The effect of repeated NMDA applications on synapse density
was not significantly different between proximal and distal den-
drites (Fig. 2C1: 20–50 lm, or >100 lm from the cell body, respec-
tively), indicating that synapse loss does not appear to differ in
these two dendritic locales (Fig. 2C2: unpaired t-test; control
(CTRL) vs. NMDA, proximal: 70.29 ± 3.10%, n = 16–21 dendritic seg-
ments; distal, 78.10 ± 5.47%, n = 15–16 dendritic segments).

Presynaptic and postsynaptic markers are generally stable in
the early phases of NMDA-induced LTD (Halpain et al., 1998),
and our use of eGFP-filled neurons was intended to avoid con-
founding degradation of specific proteins after NMDA treatment
(Colledge et al., 2003). Nevertheless, to confirm our findings using
an alternative method of labeling synaptic contacts, we stained for
the presynaptic protein, bassoon, and the postsynaptic protein,
PSD-95 (Fig. 3A1 and A2). We found that similar to our observa-
tions using synapsin/GFP to label synapses, two treatments with
NMDA induced a significant loss of putative synaptic contacts mea-
sured with bassoon as the presynaptic and GFP as the postsynaptic
labels, or with synapsin together with PSD-95 (Fig. 3A3; synapse
density normalized to CTRL, GFP/bassoon: 69.95 ± 4.11%, n = 29–
32 dendritic segments, p < 0.0001; PSD-95/synapsin:
61.72 ± 3.11%, n = 24–37 dendritic segments, p < 0.0001). We con-
clude that protein degradation of pre- or postsynaptic markers is
unlikely to underlie our observations.

To address possible concerns that repeated exposure to NMDA
renders neurons vulnerable to excitotoxic cell death (Choi, 1992),
we stained the cultures with propidium iodide (PI), a marker of dis-
rupted cell membranes. Two hours following two applications of
NMDA, we found no difference in the number of neurons staining
positive for PI, compared with mock-treated controls (unpaired t-
test, CTRL: 100%, NMDA: 100.8 ± 7.94%, n = 4–5 biological samples,
p = 0.91). Even when cultures were assessed 24 h after drug treat-
ment, no significant difference in PI staining was observed
(unpaired t-test, CTRL: 100%, NMDA: 89.2 ± 24.3%, n = 4–5 biologi-
cal samples, p = 0.63). Consistent with previous reports (Li et al.,
2010; Shehata, Matsumura, Okubo-Suzuki, Ohkawa, & Inokuchi,
2012), these data confirm that the synapse losses we observed
were not a result of excitotoxicity induced by NMDA. Finally, to
determine whether the virus and/or the eGFP made the neurons
more susceptible to NMDA-induced cell death, we looked at neu-
ronal cultures infected with Sindbis-eGFP that were PI-positive.
Again, we found no significant changes in PI uptake between the
mock-treated neurons and those treated twice with NMDA at
two hours after NMDA application (unpaired t-test, CTRL: 100%,
NMDA: 128.5 ± 18.7%, n = 3 biological samples, p = 0.20) and 24 h
post-NMDA treatment (CTRL: 100%, NMDA: 106.3 ± 18.3%, n = 3
biological samples, p = 0.70). Together these data indicate that
two brief applications of NMDA, of the same concentration
and duration that can induce LTD, induce loss of putative synapses
associated signaling is required for an in vitro model of NMDA receptor-
://dx.doi.org/10.1016/j.nlm.2016.10.013
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lasting at least four hours that is unlikely to be attributed to pro-
tein (label) degradation, dendritic location, or neuronal death.

Because microglia have been proposed to be critical for synapse
pruning (Schafer et al., 2012; Stevens et al., 2007), we sought to
determine whether this cell type could contribute to the synapse
loss we observe after NMDA treatment. In our cultures, cells are
grown for four days in serum-containing media, which supports
glial proliferation during the critical early stages of neuronal devel-
opment. Subsequent FUDR exposure and feeding with serum-free
Neurobasal media arrests further glial growth. To first determine
whether microglia appear within proximity of the dendrites we
assessed, we stained our cultures using an antibody for a
microglia-specific protein ionized calcium binding adaptor mole-
cule 1 (Iba-1) (Kraft, McPherson, & Harry, 2016). Cultures plated
with �80,000 neurons/coverslip contained only rare Iba-1-
Please cite this article in press as: Henson, M. A., et al. Long-term depression
dependent synapse pruning. Neurobiology of Learning and Memory (2016), http
stained cells (in the range 8–28/coverslip in three biological sam-
ples), and fewer in contact with eGFP-expressing neurons
(Fig. 3B1). A microglia-enriched culture served as a positive control
for the antibody (Fig. 3B2). Because microglia did not appear in suf-
ficient numbers to contact the synapses we sampled, we attempted
no further study on the topic.

3.2. Relationship between spine shrinkage and synapse loss

NMDA receptor-dependent LTD has long been known to be
accompanied by spine shrinkage, and NMDA can induce spine col-
lapse (Graber, Maiti, & Halpain, 2004; Halpain et al., 1998; Oh et al.,
2013; Zhou et al., 2004). Because synaptic contacts consist of a
dense network of extracellular matrix molecules, a simple shrink-
age or even complete collapse of a spine may, or may not result in a
-associated signaling is required for an in vitro model of NMDA receptor-
://dx.doi.org/10.1016/j.nlm.2016.10.013
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loss of contact with a presynaptic terminal. In many cases, synapse
loss may occur without spine shrinkage, and vice versa (Bastrikova
et al., 2008). To test then whether the degree of spine shrinkage or
loss was correlated with the synapse loss reported here, we com-
pared the amount of synapse loss to the amount of spine loss in
individual experiments. This analysis also would address whether
spine shrinkage below the level of detection is a likely explanation
for our observation of an apparent synapse loss. We found that,
consistent with previous findings, NMDA treatment resulted in
modest net spine loss (Fig. 4A1: CTRL, 16.76 ± 0.48; NMDA,
15.11 ± 0.52; n = 16 biological samples, p = 0.025). However, a lin-
ear regression analysis indicated that there was no correlation
between spine loss and synapse loss (Fig. 4A2: linear regression,
R2 = 0.014; p = 0.636). Thus, in many cases synapse loss could occur
without a corresponding loss of spines.

To determine whether we could infer that a separation of
synaptic structures had indeed occurred after repeated NMDA
treatment, we sought to assess the frequency of unconnected
synaptic partners and instances of ‘unpaired’ spines. Although each
dendritic spine is generally thought to contain a synapse (Alvarez &
Sabatini, 2007; Nimchinsky, Sabatini, & Svoboda, 2002), some
studies have reported spines with and without presynaptic part-
ners (Arellano, Espinosa, Fairén, Yuste, & DeFelipe, 2007; Portera-
Cailliau, Pan, & Yuste, 2003), and we also observe instances of
the same. Indeed, in our culture preparation and staining condi-
tions, over 30% of spines had no apparent presynaptic partner
within the resolution of our imaging capability (i.e. fluorescence
appearing co-localized; Fig. 4B1). However, nearly 60% of these
unpaired spines had synapsin-positive puncta within 2 lm of the
center of the spine head, possibly indicative of undetected synaptic
structure or recently separated contact. We found that NMDA
treatment results in a significant increase in the number of
Please cite this article in press as: Henson, M. A., et al. Long-term depression-
dependent synapse pruning. Neurobiology of Learning and Memory (2016), http
unpaired spines, as might be expected if synaptic structures were
separated without overt loss of spines (Fig. 4B2: CTRL,
34.66 ± 1.71%; NMDA, 44.45 ± 1.78%, n = 16 biological samples,
p = 0.0004). However, NMDA treatment caused no change in the
percentage of these unpaired spines with synapsin-positive puncta
nearby (Fig. 4B3: CTRL, 59.06 ± 3.82%; NMDA, 61.95 ± 4.11%; n = 16
biological samples, p = 0.61). We conclude from these data that
two NMDA treatments result in a net synapse loss that cannot be
accounted for by spine loss alone. This loss appears to be reflected
by an increase in the number of spines without presynaptic
partners.

3.3. Role of LTD-related signaling in NMDA-induced synapse loss

Depression of synaptic responses and NMDA-induced spine loss
have been shown to be prevented by inhibitors of protein phos-
phatases, consistent with the finding that glutamatergic synaptic
proteins are dephosphorylated by serine-threonine protein phos-
phatases PP1, PP2A, and PP2B, resulting in AMPA receptor internal-
ization (Beattie et al., 2000; Delgado et al., 2007; Halpain et al.,
1998; Lee, Barbarosie, Kameyama, Bear, & Huganir, 2000; Lee
et al., 1998; Mauna, Miyamae, Pulli, & Thiels, 2011; Morishita
et al., 2001; Mulkey, Endo, Shenolikar, & Malenka, 1994; Mulkey
et al., 1993; Oh, Derkach, Guire, & Soderling, 2006; Thiels,
Norman, Barrionuevo, & Klann, 1998). We therefore tested
whether phosphatase activity was critical for synapse loss induced
by NMDA in our cultures. To block protein phosphatase activity,
cultures were pre-incubated for 10–20 min with inhibitors of the
serine/threonine-specific phosphatases PP1/PP2A and PP2B. Cul-
tures were then treated simultaneously with NMDA and one of
the phosphatase inhibitors, calyculin A (CA, 1 nM), okadaic acid
(OA, 5 nM), fostriecin (fos, 100 nM), or FK506 (100 nM), or inhibitor
associated signaling is required for an in vitro model of NMDA receptor-
://dx.doi.org/10.1016/j.nlm.2016.10.013
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Fig. 4. NMDA treatment results in spine loss. (A1) Data are averaged means of spine density (# spines/20 lm dendrite) in cultured neurons after mock or NMDA treatment
from 16 independent experiments. Values within bars represent sample sizes (# neurons). Error bars represent SEM. Significance from control (CTRL): *p = 0.025. (A2) Spine
loss is not correlated with putative synapse loss. Data are averaged means of spine and synapse numbers, expressed as % spine loss and % synapse loss, in cultured neurons
after mock or NMDA treatment from 16 independent experiments. R2 = 0.014; p = 0.636. (B1) Confocal image (top; scale bar, 2 lm) and surface rendering (bottom; scale bar,
1 lm) of spiny dendritic sections (GFP-expressing) with punctate antibody staining to endogenous synapsin protein. Arrows indicate examples of ‘unpaired spines’. Circle
marks a 2-lm radius region of interest for an ‘unpaired spine with synapsin close’. Center of the white circle is on an unpaired spine head center; any unpaired synapsin
within the circle denotes ’synapsin close’. (B2) NMDA treatment increases the number of unpaired spines (without synapsin, as a % of the total number of spines;
***p = 0.0004), but not (B3) unpaired/nonsynaptic spines with synapsin close (ns, not significant; p = 0.61). Values within bars represent sample sizes (# neurons). Error bars
represent SEM. Significance from control (CTRL): ***p < 0.001; ns, not significant.
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alone. After washout and a one-hour recovery period, cells received
a second treatment and were fixed two hours later. We found that
the NMDA-induced reduction in putative synapses was signifi-
cantly attenuated in all cases (Fig. 5A: CTRL, 100.0 ± 4.42%; NMDA,
62.68 ± 2.92%; 1 nM CA, 89.08 ± 6.29%; NMDA + CA, 99.90 ± 4.46%;
ANOVA, F(3, 156) = 20.21, p < 0.0001; n = 3–5 biological samples;
Fig. 5B: CTRL, 100.0 ± 4.87%; NMDA, 68.36 ± 3.29%; 100 nM
Fos, 92.01 ± 5.50%; NMDA + Fos, 112.30 ± 6.85%; ANOVA, F(3, 122) =
13.95, p < 0.0001; n = 3–4 biological samples; Fig. 5C: CTRL,
100.0 ± 3.28%; NMDA, 73.04 ± 2.29%; 5 nM OA, 79.77 ± 5.77%;
NMDA + OA, 108.90 ± 3.93%; ANOVA, F(3, 197) = 22.39, p < 0.0001;
n = 3–5 biological samples; Fig. 5D: CTRL, 100.0 ± 3.59%; NMDA,
71.74 ± 2.77%; 100 nM FK506, 100.66 ± 4.16%; NMDA + FK506,
96.64 ± 3.63%; ANOVA, F(3, 238) = 16.32, p < 0.0001; n = 7 biological
samples). These results strongly suggest that PP1/PP2A and PP2B
activity, which are critical for NMDAR-dependent LTD, are also
necessary for NMDA-mediated synapse pruning. Interestingly, oka-
daic acid alone consistently induced a loss of synaptic contacts,
Please cite this article in press as: Henson, M. A., et al. Long-term depression
dependent synapse pruning. Neurobiology of Learning and Memory (2016), http
which was apparently mitigated by the NMDA treatments (Fig. 5C).
Thus, it remains unknown whether okadaic acid-induced synapse
loss is prevented by NMDA treatment, or whether NMDA-
induced loss is prevented by okadaic acid. In summary, our find-
ings are strongly suggestive of a role for protein phosphatases in
NMDA-induced reductions in synapse density in vitro, and support
the idea that NMDA-LTD may be a trigger for synapse pruning
in vivo.

Caspases have recently been found not only to function in apop-
tosis, but also are required for LTD (Jiao & Li, 2011; Li et al., 2010;
Snigdha, Smith, Prieto, & Cotman, 2012). In addition, we found that
MitoTracker Red labeled substantial numbers of mitochondria in
live eGFP-filled dendrites, as imaged with structured illumination
microscopy (3D-SIM) (Fig. 6A). We therefore reasoned that if LTD
is required for synapse pruning, then inhibition of caspase-3 activ-
ity should similarly inhibit synapse loss induced with NMDA treat-
ment. Thus, we asked whether blockade of LTD with a caspase
inhibitor also occludes NMDA-induced pruning. We found that
-associated signaling is required for an in vitro model of NMDA receptor-
://dx.doi.org/10.1016/j.nlm.2016.10.013
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10 lM z-DEVD-FMK, a caspase-3 inhibitor, applied prior to and
during NMDA treatment of cultured neurons prevented NMDA-
induced synapse loss (Fig. 6B: CTRL, 100.0 ± 5.28%; NMDA,
73.48 ± 4.18%; 10 lM DEVD, 94.86 ± 4.84%; NMDA + DEVD,
97.56 ± 4.81%; ANOVA, F(3, 151) = 6.613, p = 0.0003; n = 3 biological
samples). The caspase-3 inhibitor alone had no significant effect
on synapse number. Interestingly, although one group found no
effect of pan-caspase inhibitor, z-VAD-FMK, on NMDA-mediated
F-actin loss in spines (Graber et al., 2004), Erturk et al. reported
that inhibition of caspase-3 activity prevented spine shrinkage
from NMDA-induced LTD (Erturk et al., 2014). Overall, these data
suggest that synapse loss occurred in a caspase-dependent man-
ner, further supporting a model by which synapse pruning is trig-
gered by NMDAR-LTD.

3.4. Role of transcription and translation in synapse loss

To examine the importance of new protein or mRNA synthesis
in the mechanisms underlying synapse pruning, we tested cultures
that were treated with NMDA and protein synthesis inhibitors.
Protein synthesis has been shown to be important for LTD in
several studies (Huber et al., 2000; Manahan-Vaughan, Kulla, &
Frey, 2000; Sajikumar & Frey, 2003), but whether or not translation
is required for synapse pruning in cortical neurons has not
been investigated. To block protein synthesis activity, cultures
were pre-incubated 20 min with inhibitors at concentrations that
did not cause neuronal toxicity in pilot experiments. Cells were
then treated simultaneously with NMDA and one of two protein
Please cite this article in press as: Henson, M. A., et al. Long-term depression-
dependent synapse pruning. Neurobiology of Learning and Memory (2016), http
synthesis inhibitors that use different mechanisms to block
peptide elongation (anisomycin (aniso), 2 lM; or cycloheximide
(CHX), 60 lM). We found that the reduction of synaptic con-
tacts in NMDA-treated cultures appeared to be prevented by appli-
cation of either anisomycin or cycloheximide. Interestingly though,
as in the case with OA, treatment of cells with protein synthesis
inhibitors alone reduced synapse numbers as well (Fig. 7A1: CTRL,
100.0 ± 3.19%; NMDA, 66.20 ± 2.85%; Aniso, 84.69 ± 4.14%; NMDA
+ Aniso, 101.90 ± 5.68%; ANOVA, F(3, 203) = 19.11, p < 0.0001;
n = 4–6 biological samples; Fig. 7A2: CTRL, 100.0 ± 4.96%;
NMDA, 64.93 ± 3.95%; CHX, 62.19 ± 4.68%; NMDA + CHX,
92.46 ± 6.35%; ANOVA, F(3, 107) = 14.28, p < 0.0001; n = 3 biological
samples).

To determine whether synapse loss requires synthesis of new
mRNA, or whether existing pools of mRNA are sufficient, we tested
whether the transcription inhibitor actinomyosin D (actino, 10 nM)
prevented NMDA-induced synapse pruning. Indeed, we found that
the reduction of synaptic contacts in NMDA-treated cultures is
prevented by the application of actinomycin D (Fig. 7B: CTRL,
100.0 ± 3.34%; NMDA, 66.06 ± 3.29%; actino, 102.60 ± 5.32%;
NMDA + actino, 97.73 ± 5.55%; ANOVA, F(3, 159) = 13.36,
p < 0.0001; n = 4–5 biological samples). These data indicate that
gene transcription, which may be required for LTD, is also required
for synapse loss (Kauderer & Kandel, 2000) (but see Hu et al., 2014;
Manahan-Vaughan et al., 2000). Further, because this drug treat-
ment did not cause synapse loss on its own, these data suggest that
effects of protein synthesis inhibitors on synapse number are inde-
pendent of new mRNA synthesis.
associated signaling is required for an in vitro model of NMDA receptor-
://dx.doi.org/10.1016/j.nlm.2016.10.013
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Fig. 6. Caspase-3 inhibition blocks NMDA-induced synapse elimination. (A) 3-D
SIM image of MitoTracker Red-stained mitochondria in a dendrite from a GFP-
expressing cultured neuron. Scale bar, 2 lm. (B) Cultured neurons were treated
twice with NMDA (20 lM for 3 min) alone, NMDA plus caspase-3 inhibitor, z-
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tochemistry after 2 h. Quantification of the effect of DEVD on NMDA-induced
changes in synapse density from neurons stained with GFP and synapsin. Data are
averaged means of synapses from three biological samples. Values within bars
represent sample sizes (# neurons). Error bars represent SEM. Significance from
control (CTRL): ***p < 0.001.
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4. Discussion

Synapse numbers increase during early postnatal development
in most mammals, and are thought to decrease with neuronal
activity during experience (Yang, Pan, & Gan, 2009). Despite the
growing knowledge of the molecules important for synapse prun-
ing (Adelson et al., 2014; Bian, Miao, He, Qiu, & Yu, 2015; Bochner
et al., 2014; Datwani et al., 2009; Hu et al., 2014; Kehoe et al., 2014;
Orefice, Shih, Xu, Waterhouse, & Xu, 2016; Pielarski et al., 2013;
Sekar et al., 2016; Stevens et al., 2007; Talantova et al., 2013;
Woolfrey et al., 2009), the mechanisms by which neuronal activity
regulates this process in relation to LTD in cortical structures
remains unknown. Several models involving neuronal activity have
been proposed, including competition for growth factors or other
molecules (Bian et al., 2015), heterosynaptic-type interactions,
where highly active synapses drive pruning at the expense of
unused synapses (Buffelli et al., 2003; Liu, Fields, Fitzgerald,
Festoff, & Nelson, 1994), homeostatic-type mechanisms (Lee
et al., 2011), and homosynaptic depression of synaptic transmis-
sion, such as in LTD (Elston et al., 2009; Wiegert & Oertner,
2013). Alternative, but not mutually exclusive, models for synapse
loss posit that microglia or astrocytes consume synaptic compo-
nents (Bahrini, Song, Diez, & Hanayama, 2015; Chung, Allen, &
Please cite this article in press as: Henson, M. A., et al. Long-term depression
dependent synapse pruning. Neurobiology of Learning and Memory (2016), http
Eroglu, 2015; Chung et al., 2013; Ji, Akgul, Wollmuth, & Tsirka,
2013; Kettenmann, Kirchhoff, & Verkhratsky, 2013; Mishra, Kim,
Shin, & Thayer, 2012; Paolicelli et al., 2011; Schafer et al., 2012;
Stevens et al., 2007) (but see Cheng et al., 2010). Also unknown
is whether the mechanisms underlying developmental loss of
synapses at the neuromuscular junction are similar to those in cor-
tical structures (Sanes & Lichtman, 2001). Although we cannot rule
out the idea that some of these other mechanisms play a role in
cortical synapse elimination, our study adds to the evidence that
LTD-inducing stimulation can also induce synapse pruning.

Perhaps the best evidence to date that LTD-like mechanisms are
required for synapse pruning in the central nervous system is that
decreases in synapse number are impaired by genetic manipula-
tions that also inhibit LTD. Some examples include knockout of
components of the major histocompatibility complex (MHC1),
where LTD and/or ocular dominance plasticity are also impaired
(Adelson et al., 2014; Datwani et al., 2009; Djurisic et al., 2013;
Huh et al., 2000; Lee et al., 2014), and deletion of different subunits
of NMDARs, which results in increases in synapse number
(Adesnik, Li, During, Pleasure, & Nicoll, 2008; Fiuza & González-G
onzález, 2013; Kehoe et al., 2014; Ohno et al., 2010; Roberts
et al., 2009) (but see Attardo, Fitzgerald, & Schnitzer, 2015). How-
ever, whether these manipulations impact development of
synapses or whether they directly prevent synapse pruning is often
ambiguous (Glynn et al., 2011; Goda & Davis, 2003; Park et al.,
2011).

Here, we tested whether signaling pathways more traditionally
associated with synaptic plasticity, particularly those closely
linked to LTD, also were required for synapse pruning. To do this,
we first sought to establish a model of LTD in vitro that also
induced synaptic elimination. We found that repeated, but not sin-
gle, applications of NMDA induced reliable loss of putative synaptic
contacts, consistent with previous findings showing that repeated
electrically-induced LTD was accompanied by synapse elimination
in slice cultures (Bastrikova et al., 2008; Becker et al., 2008;
Wiegert & Oertner, 2013). The loss of synaptic structures was
apparent at two hours after drug application and was not depen-
dent on position in relation to the cell soma or on degradation of
pre- or post-synaptic markers. Also, although NMDA is known to
be excitotoxic to neurons at high doses and extended exposures
(Karpova et al., 2013; Qiu et al., 2013), NMDA treatment
(2 � 20 lM for 3 min) did not cause a significant increase in cellu-
lar death, as measured by propidium iodide staining. Moreover,
although we cannot rule out a role in the pruning process for astro-
cytes, or factors released from non-neuronal cells, we found that
microglia were too sparse in our cultures to play a role requiring
their direct contact with individual synapses. Thus, our model is
suitable for testing our hypothesis that signaling pathways
required for LTD are also required for synapse pruning.

4.1. Role of LTD-linked mechanisms

We do note that both NMDA-LTD and the putative synapse loss
reported here require protein phosphatase activity and caspase
activity, indicating that this model of synapse elimination has
some mechanistic similarities with typical LTD. For example, LTD
and glutamate receptor dephosphorylation and/or internalization
are blocked by phosphatase and caspase inhibitors (Delgado
et al., 2007; Li et al., 2010; Mulkey et al., 1993). Moreover, inhibi-
tion of caspase-3 prevents NMDA-induced spine shrinkage (Erturk
et al., 2014).

Parsing the contributions of phosphatases PP1 and/or PP2A,
PP4/5/6 by inhibitors calyculin A, fostriecin, or okadaic acid is chal-
lenging, as these drugs have broad, overlapping specificities and
inhibit enzyme activity at different IC50 values (Beaumont,
Zhong, Fletcher, Froemke, & Zucker, 2001; Favre, Turowski, &
-associated signaling is required for an in vitro model of NMDA receptor-
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Fig. 7. Protein synthesis and gene transcription inhibition prevent NMDA-mediated synapse loss. Cultured neurons were treated twice with NMDA (20 lM for 3 min) alone,
NMDA plus a protein synthesis or transcription inhibitor, inhibitor alone, or vehicle-/mock-treated, and processed for immunocytochemistry after 2 h. Quantification of the
effects of (A1) anisomycin (aniso), (A2) cycloheximide (CHX), or (B) actinomycin D (actino) on NMDA-induced changes in synapse density from neurons stained with GFP and
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Significance from control (CTRL): *p < 0.05, ***p < 0.001.
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Hemmings, 1997; Sheppeck, Gauss, & Chamberlin, 1997). Although
work in other neuronal systems found no inhibitory effects of CA
and OA on NMDA-LTD (Beattie et al., 2000; Kameyama et al.,
1998), the concentrations used here (CA, 1 nM; OA, 5 nM; fos,
100 nM) were of varying magnitudes lower, and likely impacted
the phosphatases that were blocked. Future studies such as those
using selective knockout of the individual phosphatases may be
able to distinguish between PP1/PP2A on the basis of their differ-
ential sensitivity to concentration, cellular permeation properties,
timing of activity, and subcellular location (Allen, Ouimet, &
Greengard, 1997; Bordelon et al., 2005; Slupe, Merrill, & Strack,
2011). Interestingly, although FK506 blocks NMDA-induced
AMPAR internalization in dissociated cultures (Beattie et al.,
2000; Kameyama et al., 1998), FK506 treatment alone may actually
increase dendritic spine density and complexity of branching
(Rozkaine, Hyman, & Spires-Jones, 2011). Additionally, there may
be interactions between PP1, PP2A, and PP2B (Winder & Sweatt,
2001). Future studies testing whether AMPAR internalization,
which is required for LTD and ocular dominance plasticity (Yoon
et al., 2009), is required for pruning will be essential for determin-
ing whether the actual ‘readout’ of LTD is also critical for this type
of synapse loss.

The role of protein synthesis in LTD clearly lacks consensus;
several studies have shown no effect of protein synthesis inhibitors
on LTD induced with low-frequency stimulation (Huber et al.,
2000; Xiong et al., 2006), whereas others have observed inhibitor
sensitivity (Kauderer & Kandel, 2000; Linden, 1996; Sajikumar &
Frey, 2003). Interestingly, anisomycin has been reported to activate
Please cite this article in press as: Henson, M. A., et al. Long-term depression-
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the p38 MAPK pathway to induce LTD (Xiong et al., 2006), an effect
not replicated with cycloheximide. Thus, the NMDA-mimicking
effect of anisomycin or cycloheximide pretreatment on synapse
loss preclude our making any definitive conclusions about the
requirement for protein synthesis in synapse pruning (although
see similar results reported with anisomycin at the neuromuscular
junction (McCann, Nguyen, Santo Neto, & Lichtman, 2007)). Our
results do raise the intriguing possibility that proteins made from
newly synthesized mRNA drive pruning, whereas proteins made
from existing pools of mRNA are required for synapse mainte-
nance. Supporting this idea are data from ‘tagging’ experiments
under conditions of protein synthesis inhibition suggesting that
some plasticity-related proteins/mRNA are limited (Fonseca,
Vabulas, Hartl, Bonhoeffer, & Nägerl, 2006). Here though, we show
that when all synapses are activated with NMDA, some synaptic
contacts are lost, but that NMDA action oddly protects against loss
due to protein synthesis inhibition. Our experiments cannot
address whether a synapse-specific LTD-type mechanism, or an
LTP-at-the-expense-of-others type mechanism, is responsible.
Supporting the latter, though, is evidence that (post-synaptic) neu-
ronal activity can lead to synaptic weakening after several hours
(Bukalo, Campanac, Hoffman, & Fields, 2013), although no LTP is
induced to compete in a way hypothesized by this model. Interest-
ingly, several different miRNAs related to LTD are induced with
NMDA treatment and can be regulated locally in dendrites (Hu
et al., 2014). Our LTD-inducing treatment also was unlikely to have
engaged the signaling molecule Jacob, which is recruited to the
nucleus under primarily LTP-inducing stimulation (Behnisch
associated signaling is required for an in vitro model of NMDA receptor-
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et al., 2011). In either case, local protein synthesis, possibly involv-
ing regulation by phosphatases, may be serving a critical role in
maintaining synapses (Liu-Yesucevitz et al., 2011).

Several possible mechanisms for NMDA-mediated synapse
pruning remain to be tested. For example, in a study of synapse
elimination in C. elegans, and in rat cortical cultures, E3 ubiquitin
ligases play a role (Ding, Chao, Wang, & Shen, 2007; Helton,
Otsuka, Lee, Mu, & Ehlers, 2008). In addition, extracellular pro-
teases could be involved in pruning (Liu, Fields, Festoff, & Nelson,
1994), either serving in a signaling capacity such as in a culture
model of the developing neuromuscular junction (Jia, Li, Dunlap,
& Nelson, 1999), or as a way of breaking down the extracellular
matrix in the synaptic cleft by matrix metalloproteinases
(Huntley, 2012). Related to extracellular matrix is Sema5B, which
when proteolytically processed, can induce synapse pruning
(O’Connor et al., 2009). Furthermore, evidence of the effects of
environmental exposure on synaptic remodeling (e.g. bisphenol A
and other endocrine disrupters of brain function) is mounting
(Hajszan & Leranth, 2010). Our model of NMDA-induced synapse
pruning easily can be applied to study the role of these possible
mechanisms.

4.2. Role of spine loss in synapse pruning

Dendritic spines, and likely synapses on them, are dynamic
throughout the brain and their numbers can be manipulated by
environmental enrichment or NMDAR blockade, depending on
the brain region (Attardo et al., 2015; Bian et al., 2015). However,
it is important to distinguish between the mechanisms required
for functional weakening (i.e. LTD; AMPA receptor internalization)
and those related to structure (i.e. spine shrinkage, spine loss, and
separation of pre- and post-synaptic structures), as any or all of
these processes may occur as a result of LTD initiation by NMDARs
or mGluRs (Hasegawa et al., 2015). Strong evidence has been pre-
sented that LTD induction can cause spine shrinkage (Calabrese,
Saffin, & Halpain, 2014; Nägerl et al., 2004; Oh et al., 2013; Stein,
Gray, & Zito, 2015), although the signaling required for LTD can
be dissociated from those required for spine shrinkage (Zhou
et al., 2004). Likewise, although it is assumed that spine shrinkage
would lead to eventual loss of spines resulting in synapse loss,
examples of LTD-related synapse separation have been observed
to occur in the absence of spine loss or shrinkage (Bastrikova
et al., 2008; Becker et al., 2008). Our data showing little correlation
between spine loss and synapse loss are also in agreement with
this idea (Fig. 4A2). Consistent also with this dissociation between
spine shrinkage and synapse loss is our observation that the per-
centage of ‘unpaired’ spines increased with NMDA treatment
(Fig. 4B2). These data are suggestive of presynaptic terminals dis-
connecting from spines that remained intact. Alternatively, we
cannot rule out that NMDA treatment resulted in the appearance
of new spines lacking presynaptic partners, but we note that many
of these ‘unpaired’ spines were structurally mature in that they
had no resemblance to filopodia, arguing against this possibility.
Because as yet no markers of recently separated synaptic struc-
tures exist to measure this process directly, we therefore conclude
that spine shrinkage/loss is unlikely to be a requisite step in
synapse loss, but that LTD may still be an initiating event.

4.3. Synapse loss in disease

These studies were performed at three weeks in culture, and so
the results are most relevant to developing cortical structures and
developmental disorders such as those discussed above. Neverthe-
less, synapse elimination may also have relevance to normal brain
function in adulthood and to age- and disease-related cognitive
decline. For example, dendritic spine remodeling, including elimi-
Please cite this article in press as: Henson, M. A., et al. Long-term depression
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nation, can occur after fear conditioning, extinction, and recondi-
tioning in layer V neurons of mouse frontal association cortex
(Lai, Franke, & Gan, 2012). Synapse loss by stress hormones also
is well documented (Tata, Marciano, & Anderson, 2006), but
whether its mechanism is related to LTD is unknown. In addition,
this study may have implications in diseases such as Alzheimer’s
disease (AD) and Parkinson’s disease, where synapse loss is pro-
found (Helton et al., 2008; Koffie et al., 2009). Phosphatase inhibi-
tion blocks synapse loss in a mouse model of AD Cavallucci et al.
(2013), so it is conceivable that NMDARs and LTD-like mechanisms
underlie AD-related synapse loss as well (Li et al., 2009; Wei et al.,
2009) (but see also Hong et al., 2016). We therefore look forward to
a deeper understanding of the possible role for LTD in mechanisms
underlying activity-dependent synapse pruning in both develop-
mental and disease contexts.
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