379 research outputs found
On Curvature in Noncommutative Geometry
A general definition of a bimodule connection in noncommutative geometry has
been recently proposed. For a given algebra this definition is compared with
the ordinary definition of a connection on a left module over the associated
enveloping algebra. The corresponding curvatures are also compared.Comment: 16 pages, PlainTe
Linear Connections in Non-Commutative Geometry
A construction is proposed for linear connections on non-commutative
algebras. The construction relies on a generalisation of the Leibnitz rules of
commutative geometry and uses the bimodule structure of . A special
role is played by the extension to the framework of non-commutative geometry of
the permutation of two copies of . The construction of the linear
connection as well as the definition of torsion and curvature is first proposed
in the setting of the derivations based differential calculus of Dubois-
Violette and then a generalisation to the framework proposed by Connes as well
as other non-commutative differential calculi is suggested. The covariant
derivative obtained admits an extension to the tensor product of several copies
of . These constructions are illustrated with the example of the
algebra of matrices.Comment: 15 pages, LMPM ../94 (uses phyzzx
Linear Connections on Fuzzy Manifolds
Linear connections are introduced on a series of noncommutative geometries
which have commutative limits. Quasicommutative corrections are calculated.Comment: 10 pages PlainTex; LPTHE Orsay 95/42; ESI Vienna 23
On the first order operators in bimodules
We analyse the structure of the first order operators in bimodules introduced
by A. Connes. We apply this analysis to the theory of connections on bimodules
generalizing thereby several proposals.Comment: 13 pages, AMSLaTe
Linear connections on matrix geometries
A general definition of a linear connection in noncommutative geometry has
been recently proposed. Two examples are given of linear connections in
noncommutative geometries which are based on matrix algebras. They both possess
a unique metric connection.Comment: 14p, LPTHE-ORSAY 94/9
Noncommutative generalization of SU(n)-principal fiber bundles: a review
This is an extended version of a communication made at the international
conference ``Noncommutative Geometry and Physics'' held at Orsay in april 2007.
In this proceeding, we make a review of some noncommutative constructions
connected to the ordinary fiber bundle theory. The noncommutative algebra is
the endomorphism algebra of a SU(n)-vector bundle, and its differential
calculus is based on its Lie algebra of derivations. It is shown that this
noncommutative geometry contains some of the most important constructions
introduced and used in the theory of connections on vector bundles, in
particular, what is needed to introduce gauge models in physics, and it also
contains naturally the essential aspects of the Higgs fields and its associated
mechanics of mass generation. It permits one also to extend some previous
constructions, as for instance symmetric reduction of (here noncommutative)
connections. From a mathematical point of view, these geometrico-algebraic
considerations highlight some new point on view, in particular we introduce a
new construction of the Chern characteristic classes
Lectures on graded differential algebras and noncommutative geometry
These notes contain a survey of some aspects of the theory of graded
differential algebras and of noncommutative differential calculi as well as of
some applications connected with physics. They also give a description of
several new developments.Comment: 71 pages; minor typo correction
N-complexes as functors, amplitude cohomology and fusion rules
We consider N-complexes as functors over an appropriate linear category in
order to show first that the Krull-Schmidt Theorem holds, then to prove that
amplitude cohomology only vanishes on injective functors providing a well
defined functor on the stable category. For left truncated N-complexes, we show
that amplitude cohomology discriminates the isomorphism class up to a
projective functor summand. Moreover amplitude cohomology of positive
N-complexes is proved to be isomorphic to an Ext functor of an indecomposable
N-complex inside the abelian functor category. Finally we show that for the
monoidal structure of N-complexes a Clebsch-Gordan formula holds, in other
words the fusion rules for N-complexes can be determined.Comment: Final versio
A common generalization of the Fr\"olicher-Nijenhuis bracket and the Schouten bracket for symmetry multi vector fields
There is a canonical mapping from the space of sections of the bundle to . It is shown that
this is a homomorphism on \Gamma(ST\ M)\Omega(T^\ast M;T(T^\ast M))$.Comment: 14 pages, AMSTEX, LPTHE-ORSAY 94/05 and ESI 70 (1994
On a graded q-differential algebra
Given a unital associatve graded algebra we construct the graded
q-differential algebra by means of a graded q-commutator, where q is a
primitive N-th root of unity. The N-th power (N>1) of the differential of this
graded q-differential algebra is equal to zero. We use our approach to
construct the graded q-differential algebra in the case of a reduced quantum
plane which can be endowed with a structure of a graded algebra. We consider
the differential d satisfying d to power N equals zero as an analog of an
exterior differential and study the first order differential calculus induced
by this differential.Comment: 6 pages, submitted to the Proceedings of the "International
Conference on High Energy and Mathematical Physics", Morocco, Marrakech,
April 200
- âŠ