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1 Introduction and Motivation

It is possible that the representation of space-time by a di�erential manifold is only

valid at length scales larger than some fundamental length and that on smaller scales
the manifold must be replaced by something more fundamental. One alternative

is a noncommutative geometry. If a coherent description could be found for the

structure of space-time which was pointless on small length scales, then the ultraviolet

divergences of quantum �eld theory could be eliminated. In fact the elimination of

these divergencies is equivalent to course-graining the structure of space-time over
small length scales; if an ultraviolet cut-o� � is used then the theory does not see

length scales smaller than ��1. It is also believed that the gravitational �eld could

serve as a universal regulator, a point of view which can be made compatible with

noncommutative geometry by supposing that there is an intimate connection between
(classical and/or quantum) gravity and the noncommutative structure of space-time.

To compare the two it is necessary to have a valid de�nition of a linear connection

in noncommutative geometry. There have been several examples given of di�erential

calculi on noncommutative geometries (Connes 1986, Dubois-Violette 1988, Wess &

Zumino 1990). Recently a general de�nition of the noncommutative equivalent of
a linear connection has been proposed in noncommutative geometry which makes

full use of the bimodule structure of the space of 1-forms (Dubois-Violette & Michor

1995, Mourad 1995). It has been applied to the quantum plane (Dubois-Violette et

al. 1995) and to matrix geometries (Madore et al. 1995).

A di�erential manifold can always be imbedded in a at euclidean space of suf-

�ciently high dimension and a linear (metric) connection on the manifold can be

considered as de�ned by the imbedding in terms of the standard at connection

in the enveloping space. We shall show that noncommutative approximations to
a large class of di�erential manifolds can be obtained by a similar procedure and

corresponding linear connections can be constructed as a restriction of the unique

metric connection on the enveloping matrix geometry. In the limit, when the length

parameter which determines the noncommutativity tends to zero, �rst-order correc-

tions to the commutative linear connection can be calculated. It is these terms which
must eventually be compared with the quasiclassical corrections to the connection in

quantum gravity.

Some basic formulae from previous articles are given in this Section and in Sec-

tion 2 a basic universal linear connection is introduced from which linear connections
can be constructed in a way similar to that in which connections can be induced on

an ordinary manifold when it is imbedded in a at space of higher dimension. The

quasicommutative limit is considered in Section 3.

Let V be a di�erential manifold and C(V ) the algebra of smooth functions on V .
For simplicity we suppose V to be parallelizable and we choose �� to be a globally

de�ned moving frame on V . Let (
�(V ); d) be the ordinary di�erential calculus on

V . A linear connection on V can be de�ned as a connection on the cotangent bundle

to V . It can be characterized as a linear map


1(V )
D
! 
1(V ) 
C(V ) 


1(V ) (1:1)

which satis�es the condition

D(f�) = df 
 � + fD� (1:2)
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for arbitrary f 2 C(V ) and � 2 
1(V ).

The connection form !�� is de�ned in terms of the covariant derivative of the

moving frame:

D�� = �!�� 
 �� : (1:3)

Let � be the projection of 
1(V )
C(V ) 

1(V ) onto 
2(V ). The torsion form �� can

be de�ned as

�� = (d� � �D)��: (1:4)

The module 
1(V ) has a natural structure as a right C(V )-module and the corre-
sponding condition equivalent to (1.2) is determined using the fact that C(V ) is a

commutative algebra:

D(�f) = D(f�): (1:5)

By extension, a linear connection over a general noncommutative algebra A with
a di�erential calculus (
�(A); d) can be de�ned as a linear map


1(A)
D
! 
1(A) 
A 
1(A) (1:6)

which satis�es the condition (1.2) for arbitrary f 2 A and � 2 
1(A). The module

1(A) has again a natural structure as a right A-module but in the noncommutative

case it is impossible in general to consistently impose the condition (1.5) and a

substitute must be found. We must decide how it is appropriate to de�ne D(�f)

in terms of D(�) and df . It has been proposed (Mourad 1995, Dubois-Violette &
Michor 1995) to introduce as part of the de�nition of a linear connection a map � of


1(A) 
A 
1(A) into itself and to de�ne D(�f) by the equation

D(�f) = �(� 
 df) + (D�)f: (1:7)

If the algebra is commutative this is equivalent to (1.5). The curvature R can be
de�ned as the map


1(A)
R
! 
2(A) 
A 
1(A) (1:8)

given, in the case that the torsion vanishes, by R = (� 
 1) �D2.

A metric g on V can be de�ned as a C(V )-linear, symmetric map of 
1(V ) 
C

1(V ) into C(V ). This de�nition makes sense if one replaces C(V ) by an algebra A

and 
1(V ) by any di�erential calculus 
1(A) over A. By analogy with the commuta-

tive case we shall say that the covariant derivative (1.6) is metric if (1
g)�D = d�g.

We shall use the conventions that lower-case Greek indices take the values from

1 to d, lower-case Latin indices at the beginning of the alphabet take the values from

1 to m2 � 1 and the lower-case Latin indices from p to the end of the alphabet take

the values from 1 to n2 � 1. The integers d;m; n satisfy the inequalities

d < m2 � 1; m < n:
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3 Induced Linear Connections

Noncommutative geometry is based on the fact that one can formulate (Koszul 1960)
much of the ordinary di�erential geometry of a manifold in terms of the algebra of

smooth functions de�ned on it. It is possible to de�ne a �nite noncommutative ge-

ometry based on derivations by replacing this algebra by the algebra Mn of n � n

complex matrices (Dubois-Violette et al. 1989, 1990). Since Mn is of �nite dimen-

sion as a vector space, all calculations reduce to pure algebra. Matrix geometry is
interesting in being similar is certain aspects to the ordinary geometry of compact

Lie groups; it constitutes a transition to the more abstract formalism of general non-

commutative geometry (Connes 1986, 1994). Our notation is that of Dubois-Violette

et al. (1989). We �rst recall some important formulae.

Let �r, for 1 � r � n2 � 1, be an anti-hermitian basis of the Lie algebra of the

special unitary group SUn in n dimensions. The �r generate Mn as an algebra and

the derivations er = ad�r form a basis for the Lie algebra of derivations Der(Mn) of

Mn. In order for the derivations to have the correct dimensions we must introduce

a mass parameter � and replace �r by ��r. We shall set � = 1. We de�ne df for
f 2Mn by

df(er) = er(f): (2:1)

In particular

d�r(es) = �Cr
st�

t: (2:2)

We raise and lower indices with the Killing metric grs of SUn and we use the Einstein
summation convention.

We de�ne the set of 1-forms 
1(Mn) to be the set of all elements of the form fdg

with f and g inMn. The set of all di�erential forms is a di�erential algebra 

�(Mn).

The couple (
�(Mn); d) is a di�erential calculus over Mn. There is a convenient

system of generators of 
1(Mn) as a left- or right-module completely characterized
by the equations

�r(es) = �rs : (2:3)

The �r are related to the d�r by the equations

d�r = Cr
st �

s�t; �r = �s�
rd�s: (2:4)

The �r satisfy the same structure equations as the components of the Maurer-Cartan

form on the special unitary group SUn:

d�r = �
1

2
Cr

st �
s�t: (2:5)

The product on the right-hand side of this formula is the product in 
�(Mn). We

shall refer to the �r as a frame or Stehbein. If we de�ne � = ��r�
r we can write the

di�erential df of an element f 2 
0(Mn) as a commutator:

df = �[�; f ]: (2:6)

From (2.5) we see that the linear connection de�ned by

D�r = �!rs 
 �s; !rs = �
1

2
Cr

st �
t (2:7)
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has vanishing torsion. With this connection the geometry of Mn looks like the in-

variant geometry of the group SUn. Since the elements of the algebra commute with

the frame �r , we can de�ne D on all of 
�(Mn) using (1.2) or (1.7). The map � is

given by
�(�r 
 �s) = �s 
 �r : (2:8)

From the formula (1.8) we see that R(�r ) = �
r
s 
 �s where the curvature 2-form


r
s is given by


r
s =

1

8
Cr

stC
t
pq�

p�q : (2:9)

From Equation (2.4) we �nd that D(d�r) is given by

D(d�r) = Cr
st

�
d�s 
 �t �

1

2
�sCt

pq�
p 
 �q

�
:

A short calculation yields

D(d�r) = �
1

2
Cr

s(pC
s
q)t�

t�p 
 �q: (2:10)

From this formula it is obvious also that the torsion vanishes.

The connection (2.7) is the unique torsion-free metric connection on 
1(Mn)

(Madore et al. 1995). It has been used (Dubois-Violette et al. 1989, Madore 1990,

Madore & Mourad 1993, 1994, Madore 1995) in the construction of noncommutative

generalizations of Kaluza-Klein theories.

Let f��g be a set of d matrices which generate Mn as an algebra and which

are algebraically independent. By this we mean that the �� do not satisfy any

polynomial relation of order p with p << n. Since each �r can be written as a
polynomial �r = �r(��) in the �� we have

d�r = Ar
�(d�

�); (2:11)

where Ar
�(d�

�) is a polynomial in �� and d�� which is linear in the latter. Since

the �� generate Mn it follows that the equations e�f = 0 can have only f / 1 as

solutions. The algebraic independence implies that there is no relation of the form

A�
� (d�

�) = 0; (2:12)

with A�
� (d�

�) a polynomial of order p� 1 in the ��.

Each choice of f��g de�nesMn as a n
2-dimensional approximation to the algebra

of functions on a d-dimensional submanifold V of IRn2�1. Let 
�C be the associated
di�erential calculus. We shall argue in the next section that a di�erential subalgebra

of 
�
C
has a limit as n ! 1 which can be considered as the de Rham di�erential

calculus over V .

From (2.10) we have

D(d��) = �
1

2
C�

s(pC
s
q)t�

t�p 
 �q : (2:13)
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From (2.4) each �r on the right-hand side of this equation can in turn be expressed

in terms of the d��:

�r = �s(�
�)�r(��)As

�(d�
�): (2:14)

Equations (2.13) and (2.14) de�ne a covariant derivative on the di�erential calculus


�C. For �nite n it is a restriction of (2.7). By construction it satis�es the Leibniz
rules (1.2) and (1.7). The right-hand side however cannot be written in the form

(1.3); there is no corresponding connection form in general. The map �, which is

given on �r 
 �s by the simple expression (2.8), becomes very complicated when

de�ned on d�� 
 d��.

3 Fuzzy manifolds

To discuss the commutative limit it is convenient to change the normalization of the
generators ��. Recall that the �� have the dimensions of mass. We introduce the

parameter �k with the dimensions of (length)2 and de�ne `coordinates' x� by

x� = i�k��: (3:1)

We de�ne matrices L�� by the equations

[x�; x� ] = i�kL��: (3:2)

By our assumption the L�� can be expressed as polynomials in the x�, normally
of order n. By taking higher-order commutators of the x� the algebra will eventually

close as a Lie algebra to form an irreducible n-dimensional representation of the Lie

algebra of SUm for some m � n. By assumptionm2� 1� d must be at least as large

as the number of Casimir relations of SUm. We shall assume that m << n. Let xa

be the extended set of matrices:

fxag = fx�; L��; [x�; L�]; : : :g

Globally the limit manifold V will be then a submanifold of the sphere of some radius

r in IRm2
�1. A metric on it would necessarily have euclidean signature. We shall

have the relation

�k �
r2

n
; (3:3)

and so �k! 0 as n!1. This is the commutative limit.

For each l � 1 let Cl be the vector space of l
th-order symmetric polynomials in

the x� and Ll the vector space of l
th-order symmetric polynomials in the xa. Then

we have

Cl � Cl+1; Ll � Ll+1;

and the set fLlg is a �ltration of Mn:

[

l

Cl �Mn;
[

l

Ll =Mn: (3:4)
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For �xed l the set Cl tends to the set of lth-order polynomials in the x� in the limit

n ! 1. We shall refer to the algebra Mn with the set of fClg as a fuzzy manifold.

The fClg do not form a graded algebra but from the de�nition of the fLlg we have

CkCl � Ck+l + �kLk+l�1:

A speci�c example is the fuzzy 2-sphere (Madore 1992). Consider IR3 with

coordinates xa, 1 � a � 3, and euclidean metric gab = �ab. Let V be the sphere S2

de�ned by

gabx
axb = r2: (3:5)

Consider the algebra P of polynomials in the xa and let I be the ideal generated by

the relation (3.5). That is, I consists of elements of P with gabx
axb � r2 as factor.

Then the quotient algebra A = P=I is dense in the algebra C(S2). Any element of

A can be represented as a �nite multipole expansion of the form

f(xa) = f0 + fax
a +

1

2
fabx

axb + � � � ; (3:6)

where the fa1:::ai
are completely symmetric and trace-free. We obtain a vector space

of dimension n2 if we consider only polynomials of order n� 1. We can rede�ne the
product of the xa to make this vector space into the algebra of n� n matrices.

Suppose that we suppress the terms nth order in the expansion (3.6) of every

function f . The resulting set is a vector space An of dimension n2. We can introduce

a new product in the xa which will make it into the algebra Mn. We make the

identi�cation

xa = �Ja (3:7)

where the Ja generate the n-dimensional irreducible representation of the Lie algebra

of SU2 with [Ja; Jb] = i�abcJ
c. Since the Ja satisfy the quadratic Casimir relation

JaJ
a = (n2 � 1)=4 the parameter � must be related to r by the equation 4r2 =

(n2 � 1)�2. Introduce the constant

�k = �r: (3:8)

The xa satisfy the commutation relations

[xa; xb] = i�kCc
abxc; Cabc = r�1�abc: (3:9)

The two length scales r and �k are related through the integer n:

4r4 = (n2 � 1)�k2: (3:10)

In particular (3.3) is satis�ed. The space Ll is the space of symmetric polynomials of
order l in the xa. De�ne x� as the �rst two of the xa. Then L12 = r�1x3. Because
of the Casimir relation we have

[

l

Cl =
[

l

Ll =Mn:
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For n >> l Ll can be identi�ed as the space of polynomials of order l on S2 and Cl
as the space of polynomials of order l on the coordinate patch.

The fuzzy sphere with three generators is not a good example for the construction

of linear connections since the limit manifold is not parallelizable. Global frames

must be constructed on the U1 bundle S3 over S2. From them connections can

be constructed on S2 using a Kaluza-Klein-type decomposition. (Grosse & Madore

1991). A more convenient example is obtained by taking only two generators. It is
known (Weyl 1931) that the algebra Mn can be generated by two matrices u and v

which satisfy the relations

un = 1; vn = 1; uv = qvu; q = e2�i=n:

The space Cl becomes then the space of symmetric polynomials of order l in u and v.

For n >> l it can be identi�ed as the space of polynomials of order l on the torus.

One sees from these two examples that the structure of the limit manifold is

determined by the �ltration. The dimension of the manifold is encoded in the dimen-

sion of C1. The manifolds di�er in global topology because the vector spaces Cl di�er.
A polynomial in the x� of order l, with n >> l, can of course be always written as

a polynomial in u and v but will then in general be of order n. The transformation

in no way respects the �ltration. This corresponds to the fact that a map from the

torus onto the sphere is necessarily singular. A physical theory expressed in terms of

the matrix approximation would detect the di�erence between the topologies through
the dependence of the action on the derivations e� = adx�.

Let fx�g be an arbitrary subset of generators of Mn. If we rewrite (2.11) in

terms of x� we see that in the commutative limit

Ar
�(dx

�) =
@xr

@x�
dx� + o(�k):

This gives the di�erential of an arbitrary function in terms of the di�erential of the
coordinates. The forms �r are singular in the limit �k ! 0 (Madore 1992). No

conclusions can be drawn directly from Equation (2.13) concerning this limit unless

(2.14) is used �rst to eliminate the �r .

Consider the 1-form [f; dg]. It satis�es

[f; dg](X) = [f;Xg]: (3:11)

In the limit �k! 0 de�ne a Poisson bracket ff; gg on V by

i�kff; gg = [f; g]: (3:12)

By taking the limit of (3.11) we can de�ne the extension ff; dgg by

ff; dgg(X) = ff;Xgg: (3:13)

It is obvious that ff; dgg is not an element of 
1(V ). It is a C-linear map of the
derivations into the functions but it cannot be C(V )-linear, because Poisson vector

�elds do not form a C-module. The 1-form de�ned by (3.11) contains a term of order

8



�k which cannot be approximated by an element of 
1(V ). De�ne 
1
C
(V ) to be the

1-forms of a new di�erential calculus on V de�ned by (3.13). We have seen then that


1
C(V ) 6= 
1(V ): (3:14)

In a sense the left-hand side is smaller since it is only de�ned on Poisson vector �elds.

However since

dff; gg = fdf; gg+ ff; dgg (3:15)

every element of 
1(V ) de�nes by restriction an element of 
1
C
(V ). So in a sense the

left-hand side is larger. The map d of 
1
C(V ) into 
2

C(V ) is de�ned by dff; dgg =
fdf; dgg with

fdf; dgg(X;Y ) = fXf; Y gg � fY f;Xgg:

The image is also not C(V )-linear and would not coincide with the bracket of 1-forms

de�ned, for example, by Koszul (1985).

We de�ne the element dxab of 
1
C(V ) as

dxab = fx�; dx�g: (3:16)

We can write the induced connection in the quasicommutative limit in the form

D(dx�) = ����dx
� 
 dx � �k��(1) + o(�k2);

D(dx�� ) = ����
(1)

+ o(�k);
(3:17)

where

��(1) = �L
�
��dx

� 
 dx� + �R
�
��dx

d 
 dx�: (3:18)

The �L
�
�� and �R

�
�� can be considered as functions on the limit manifold V .

Although the right-hand side of (2.13) is symmetric in p and q, in general because of

our convention of placing all coe�cients of forms to the left of the di�erential,

�L
�
�� 6= �R

�
��:

The right-hand side of the second equation (3.17) is an element of 
1
C
(V ) 

1

C
(V ).

We have deduced the form of the Equations (3.17) from (2.13) and (2.14).

They depend however only on the Poisson structure, through the di�erential calculus


�
C
(V ). The Poisson structure is the unique `shadow' of the original noncommutative

algebra and the extra terms on the right-hand side of (3.17) the unique `shadow'
of the noncommutative linear connection. As we have mentioned the manifolds we

can approximate in this way are compact with metrics necessarily of euclidean signa-

ture. They are of interest in that their algebra of functions can be approximated by

algebras of �nite dimension. Of more physical relevance for relativistic physics are

noncompact manifolds which can support metrics of Minkowski signature. The �rst
example along the lines indicated by the relation (3.2) was given by Snyder (1947).

See also Madore (1988, 1995). Doplicher et al. (1995) have given an analysis of

several possible noncommutative extensions of Minkowski space within the context

of relativistic quantum �eld theory.
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