A common generalization of the Frölicher-Nijenhuis bracket and the Schouten bracket for symmetric multivector fields

by Michel Dubois-Violette ${ }^{1}$ and Peter W. Michor ${ }^{2}$
${ }^{1}$ LPTHE, Université Paris XI, Bâtiment 211, F-91405 Orsay Cedex, France
${ }^{2}$ Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria and Erwin Schrödinger International Institute of Mathematical Physics, Pasteurgasse 6/7, A-1090 Wien, Austria

Communicated by Prof. A. Nijenhuis at the meeting of April 25, 1994

Abstract

There is a canonical mapping from the space of sections of the bundle $A T^{*} M \otimes S T M$ to $\Omega\left(T^{*} M ; T\left(T^{*} M\right)\right)$. It is shown that this is a homomorphism on $\Omega(M ; T M)$ for the FrölicherNijenhuis brackets, and also on $\Gamma(S T M)$ for the Schouten bracket of symmetric multivector fields. But the whole image is not a subalgebra for the Frölicher-Nijenhuis bracket on $\Omega\left(T^{*} M ; T\left(T^{*} M\right)\right)$.

1. INTRODUCTION

It is well known that there are several extensions of the bracket of vector fields on a smooth manifold M. In particular, the Frölicher-Nijenhuis bracket extends the bracket of vector fields to all vector valued differential forms on M, i.e. to $\Omega(M ; T M)$. Another classical extension is the Schouten bracket, this is an extension of the bracket of vector fields to all symmetric multivector fields, i.e. to $\Gamma(S T M)$. The Schouten bracket has a natural interpretation in terms of Poisson bracket. Indeed, there is an obvious isomorphism π^{*} of the algebra $\Gamma(S T M)$ on the algebra of smooth functions on $T^{*} M$ which are polynomial on the fiber. On the other hand there is a natural symplectic structure on $T^{*} M$ and the Schouten bracket corresponds just to the Poisson bracket under the above isomorphism.

It is very natural, and it is the aim of this paper, to try to find a common generalization of the two above brackets.

[^0]Let us give an example of problem where such an extension could be welcome. Suppose that M is equipped with a Riemannian metric g and let g denote the corresponding contravariant symmetric two-tensor field. Then, $\pi^{*}(\boldsymbol{g})$ is the Hamiltonian of the geodesic flow on $T^{*} M$ and the symmetric tensor fields S satisfying $[\boldsymbol{g}, S]=0$ correspond to functions on $T^{*} M$ which are invariant by the geodesic flow; such symmetric tensor fields are called Killing tensors. These Killing tensors form a Poisson subalgebra of $\Gamma(S T M)$. Now if S is a Killing tensor of order k; then it is not hard to show that only its covariant derivatives of order not greater than k are independent, i.e. its covariant derivatives of order greater than k are linear combination of those of order not greater than k with coefficients which are covariant expressions in the curvature tensor. This implies in particular that the equations $[g, S]=0$ have a lot of integrability conditions and, since these integrability conditions are always consequence of $d^{2}=0$, it is natural to introduce the algebra $\Omega(M ; S T M)$ of symmetric multivector valued forms to analyse them. This algebra is a graded-commutative algebra for the graduation given by the form-degree and on this algebra there is a nice algebra of graded derivations associated with the metric. It is generated by three antiderivations, $\nabla, \delta_{g}, \delta_{g}^{\prime}$, where ∇ is the exterior covariant differential corresponding to the Levi-Civita connection, δ_{g} is the unique $C^{\infty}(M)$-linear antiderivation such that $\delta_{g} X \in \Omega^{1}(M)$ for $X \in \Gamma(T M)$ is the one-form $Y \rightarrow \delta_{g} X(Y)=$ $g(X, Y)$ and $\delta_{g} \Omega^{\prime}(M)=0, \delta_{g}^{\prime}$ is the unique $C^{\infty}(M)$-linear antiderivation such that $\delta_{g}^{\prime} \Gamma(T M)=0$ and $\delta_{g}^{\prime} \omega \in \Gamma(T M)$ for $\omega \in \Omega^{1}(M)$ is the vector field obtained by the contraction of g with ω. One has: $\delta_{g}^{2}=0, \delta_{g}^{\prime 2}=0, \delta_{g} \delta_{g}^{\prime}+\delta_{g}^{\prime} \delta_{g}$ equals the total degree in form and tensor, $\nabla \delta_{g}+\delta_{g} \nabla=0$ (because ∇ is torsion free) and the derivation $D=\nabla \delta_{g}^{\prime}+\delta_{g}^{\prime} \nabla$ is an extension to $\Omega(M ; S T M)$ of the Schouten bracket with g. So it is natural to try to construct a bracket on $\Omega(M ; S T M)$ extending the Schouten bracket for which D is the bracket with g. It is not difficult to construct such a bracket namely

$$
[\alpha \otimes F, \beta \otimes G]_{\nabla}=L_{\alpha \otimes F}^{\nabla}(\beta) G-(-1)^{a b} L_{\beta \otimes G}^{\nabla}(\alpha) F+\alpha \wedge \beta \otimes[F, G]
$$

for $\alpha \in \Omega^{a}(M), \beta \in \Omega^{b}(M), F, G \in \Gamma(S T M)$ with

$$
L_{\alpha \otimes F}^{\nabla}(\omega)=i_{\alpha \otimes F} \nabla \omega+(-1)^{a} \nabla i_{\alpha \otimes F} \omega
$$

for $\omega \in \Omega(M)$ and where the generalised insertion i is defined by

$$
i_{\alpha \otimes X_{1} \vee \cdots \vee X_{k}}(\omega)=\sum_{r=1}^{k} \alpha \wedge i_{X_{r}}(\omega) \otimes X_{1} \vee \ldots \widehat{X_{r}} \cdots \vee X_{r}
$$

(the hat meaning omission of this element).
More generally if ∇ is any torsion free linear connection on M, the above formula defines a bracket $[,]_{\nabla}$ which is an extension to $\Omega(M ; S T M)$ of both the Schouten bracket and the Frölicher-Nijenhuis bracket. Furthermore, this bracket is a graded derivation in each variable, it is also graded antisymmetric but unfortunately it does not satisfy the graded Jacobi identity.

In this paper we shall follow another way: we first send $\Omega(M ; S T M)$ in
$\Omega\left(T^{*} M\right)$ by using the isomorphism π^{*}, then we use a construction introduced by one of us [5] to send it in $\Omega\left(T^{*} M ; T\left(T^{*} M\right)\right)$ in which there is the FrölicherNijenhuis bracket and we show that this gives an injective homomorphisms of graded Lie agebras for the Frölicher-Nijenhuis bracket on $\Omega(M ; T M)$ and the Schouten bracket on $\Gamma(S T M)$. But the common generalization of these two brackets does not exist on the space $\Omega(M ; S T M)$, only on $\Omega\left(T^{*} M ; T\left(T^{*} M\right)\right.$). This is similar to the common generalization found by Vinogradov [14,1] of the Frölicher-Nijenhuis bracket and the skew symmetric Schouten bracket on $\Gamma(A T M)$, which exist only on a quotient of a certain space of 'superdifferential operators' on $\Omega(M)$.

2. THE POISSON BRACKET FOR DIFFERENTIAL FORMS

2.1. Frölicher-Nijenhuis bracket

For the convenience of the reader we review here the theory of graded derivations of the graded commutative algebra of differential form on a smooth manifold M. See [2] and [3] for the original source, and [6] or [4], sections 8-11, as a convenient reference, whose notation we follow here.

The space $\operatorname{Der}(\Omega(M))$ of all graded derivations of the graded commutative algebra of differential forms on M is a graded Lie algebra with the graded commutator as bracket. In the following formulas we will always assume that $K \in$ $\Omega^{k}(M ; T M)=\Gamma\left(\Lambda^{k} T^{*} M \otimes T M\right), L \in \Omega^{l}(M ; T M), \omega \in \Omega^{q}(M)$. The formula

$$
\begin{aligned}
& \left(i_{K} \omega\right)\left(X_{1}, \ldots, X_{k+q-1}\right) \\
& \quad=\frac{1}{k!(q-1)!} \sum_{\sigma} \operatorname{sign}(\sigma) \omega\left(K\left(X_{\sigma 1}, \ldots, X_{\sigma k}\right), X_{\sigma(k+1)}, \ldots\right)
\end{aligned}
$$

for $X_{i} \in \mathfrak{X}(M)$ (or $\left.T_{x} M\right)$ defines a graded derivation $i_{K} \in \operatorname{Der}_{k-1} \Omega(M)$ and any derivation D with $D \mid \Omega^{0}(M)=0$ is of this form. On $\Omega^{*+1}(M, T M)$ (with the grading *) a graded Lie bracket is given by $[K, L]^{\wedge}=i_{K} L-(-1)^{(k-1)(l-1)} i_{L} K$ where $i_{K}(\psi \otimes X):=i_{K}(\psi) \otimes X$, which satisfies $i\left([K, L]^{\wedge}\right):=\left[i_{K}, i_{L}\right]$. It is called the Nijenhuis-Richardson bracket, see [11].

The exterior derivative d is an element of $\operatorname{Der}_{1} \Omega(M)$. We define the Lie derivation $\mathcal{L}_{K}=\mathcal{L}(K) \in \operatorname{Der}_{k} \Omega(M)$ by $\mathcal{L}_{K}:=\left[i_{K}, d\right]$. For any graded derivation $D \in \operatorname{Der}_{k} \Omega(M)$ there are unique $K \in \Omega^{k}(M ; T M)$ and $L \in \Omega^{k+1}(M ; T M)$ such that $D=\mathcal{L}_{K}+i_{L}$. We have $L=0$ if and only if $[D, d]=0$, and $D \mid \Omega^{0}(M)=$ 0 if and only if $K=0$. Clearly $\left[\left[\mathcal{L}_{K}, \mathcal{L}_{L}\right], d\right]=0$, so we have $[\mathcal{L}(K), \mathcal{L}(L)]=$ $\mathcal{L}([K, L])$ for a uniquely defined $[K, L] \in \Omega^{k+l}(M ; T M)$. This vector valued form $[K, L]$ is called the Frölicher-Nijenhuis bracket of K and L. It is well behaved with respect to the obvious relation of f-relatedness of tangent bundle valued differential forms, where $f: M \rightarrow N$. For $k=l=0$ it coincides with the Lie bracket of vector fields. Let the degree of ω be q, of φ be k, and of ψ be l. Let the other degrees be as indicated. Then the following formulas hold

$$
\begin{equation*}
\left[\mathcal{L}_{K}, i_{L}\right]-i([K, L])-(-1)^{k l} \mathcal{L}\left(i_{L} K\right) \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& i(\omega \wedge L)=\omega \wedge i(L) \tag{2}\\
& \mathcal{L}(\omega \wedge K)=\omega \wedge \tag{3}\\
& \left\{\begin{aligned}
{\left[\omega \wedge K_{K}-(-1)^{q+k-1} i(d \omega \wedge K)\right.}
\end{aligned}\right. \tag{4}\\
& \begin{aligned}
{[} & \omega \wedge\left[K_{1}, K_{2}\right]-(-1)^{\left.q+k_{1}\right) k_{2}} \mathcal{L}\left(K_{2}\right) \omega \wedge K_{1}
\end{aligned} \tag{5}\\
& \left\{\begin{aligned}
{[\varphi \otimes X, \psi \otimes Y]=} & \varphi \wedge \psi \otimes[X, Y]+\varphi \wedge \mathcal{L}_{X} \psi \otimes Y-\mathcal{L}_{Y} \varphi \wedge \psi \otimes X \\
& +(-1)^{k}\left(d \varphi \wedge i_{X} \psi \otimes Y+i_{Y} \varphi \wedge d \psi \otimes X\right)
\end{aligned}\right.
\end{align*}
$$

2.2. Poisson manifolds

Let (M, ρ) be a Poisson manifold, that is a smooth manifold M together with a 2-field $\rho \in \Gamma\left(\Lambda^{2} T M\right)$ satisfying $[\rho, \rho]=0$, where $[$,$] is the Schouten-Nijenhuis$ bracket on $\Gamma\left(\Lambda^{*-1} T M\right)$, see [7] and [12]. Then ρ induces a skew symmetric differential concomitant on $C^{\infty}(M, \mathbb{R})$ given by $\{f, g\}_{\rho}=\rho(d f, d g)$. The Jacobi identity for this bracket is equivalent to $[\rho, \rho]=0$, see [7], 1.4 for a nice proof. Here we view ρ as a skew symmetric bilinear form on $T^{*} M$, but also as a vector bundle homomorphism $\rho: T^{*} M \rightarrow T M$.

It is well known that for a symplectic manifold (M, ω) with associated Poisson structure $\rho=\omega^{-1}: T^{*} M \rightarrow T M$ we have the following exact sequence of Lie algebras:

$$
\begin{equation*}
0 \rightarrow H^{0}(M) \rightarrow C^{\infty}(M, \mathbb{R}) \xrightarrow{H} \mathfrak{X}_{\omega}(M) \xrightarrow{\gamma} H^{1}(M) \rightarrow 0 . \tag{1}
\end{equation*}
$$

Here $H^{*}(M)$ is the real De Rham cohomology of M, the space $C^{\infty}(M, \mathbb{R})$ is equipped with the Poisson bracket $\{,\}_{\rho}, \mathfrak{X}_{\omega}(M)$ consists of all vector fields ξ with $\mathcal{L}_{\xi} \omega=0$ (the locally Hamiltonian vector fields), which is a Lie algebra for the Lie bracket. Also H_{f} is the Hamiltonian vector field for $f \in C^{\infty}(M, \mathbb{R})$ given by $H_{f}=\rho(d f)$, and $\gamma(\xi)$ is thc cohomology class of $i_{\xi} \omega$. The spaces $I^{0}(M)$ and $H^{1}(M)$ are equipped with the zero bracket.

2.3. The graded Poisson bracket for differential forms

In [5] the exact sequence 2.2(1) has been generalized in the following way. It was stated there for symplectic manifolds, but the proofs there work without any change also for Poisson manifolds.

We consider first the space $\Omega(M ; T M)=\Gamma\left(\Lambda^{*} T^{*} M \otimes T M\right)$ of tangent bundle valued differential forms on M, equipped with the Frölicher- Nijenhuis bracket $[$,$] . We first extend \rho: T^{*} M \rightarrow T M$ to a module valued graded derivation of degree -1 by

$$
\begin{align*}
& \rho: \Omega(M) \rightarrow \Omega(M ; T M), \tag{1}\\
& \rho \mid \Omega^{0}(M)=0, \quad \text { and for } \varphi_{i} \in \Omega^{1}(M) \text { by } \\
& \rho\left(\varphi_{1} \wedge \cdots \wedge \varphi_{k}\right)=\sum_{i=1}^{k}(-1)^{i-1} \varphi_{1} \wedge \ldots \widehat{\varphi_{i}} \cdots \wedge \varphi_{k} \otimes \rho\left(\varphi_{i}\right)
\end{align*}
$$

Then we have the Hamiltonian mapping

$$
\begin{align*}
& H: \Omega \Omega(M) \rightarrow \Omega \Omega(M ; T M) \tag{2}\\
& H(\psi):=\rho(d \psi) \\
& H\left(f_{0} d f_{1} \wedge \cdots \wedge d f_{k}\right)=\sum_{i=0}^{k}(-1)^{i} d f_{0} \wedge \ldots \widehat{d f_{i}} \cdots \wedge d f_{k} \otimes H_{f_{i}}
\end{align*}
$$

Theorem. [5]. Let (M, ρ) be a Poisson manifold. Then on the space $\Omega(M) / B(M)$ of differential forms modulo exact forms there exists a unique graded Lie bracket $\{,\}_{\rho}$, which is given by the quotient modulo $B(M)$ of

$$
\begin{align*}
& \{\varphi, \psi\}_{\rho}^{1}=i\left(H_{\varphi}\right) d \psi, \quad \text { or } \\
& \left\{\begin{array}{l}
\left\{f_{0} d f_{1} \wedge \cdots \wedge d f_{k}, g_{0} d g_{1} \wedge \cdots \wedge d g_{l}\right\}_{\rho}^{1} \\
\quad=\sum_{i, j}(-1)^{i+j}\left\{f_{i}, g_{j}\right\}_{\rho} d f_{0} \wedge \ldots \widehat{d f_{i}} \cdots \wedge d f_{k} \wedge d g_{0} \wedge \ldots \widehat{d g_{j}} \cdots \wedge d g_{k}
\end{array}\right. \tag{3}
\end{align*}
$$

such that $H: \Omega(M) / B(M) \rightarrow \Omega(M ; T M)$ is a homomorphism of graded Lie algebras.

If $\rho=\omega^{-1}$ for a symplectic structure ω on M then we have a short exact sequence of vector spaces

$$
\left\{\begin{align*}
0 & \rightarrow H^{*}(M) \rightarrow \Omega(M) / B(M) \xrightarrow{H} \Omega_{\mathcal{L} \omega=0}(M ; T M) \tag{4}\\
& \rightarrow H^{*+1}(M) \oplus \Gamma\left(E_{\omega}\right) \rightarrow 0
\end{align*}\right.
$$

where $\Gamma\left(E_{\omega}\right)$ is a space of sections of a certain vector bundle and where the space $\Omega_{\mathcal{L} \omega=0}(M ; T M)$ is the graded Lie subalgebra of all $K \in \Omega(M ; T M)$ such that for the Lie derivative along K we have $\mathcal{L}_{K} \omega=0$. We also have the exact sequence of graded Lie algebras

$$
\begin{equation*}
0 \rightarrow H^{*}(M) \rightarrow \Omega(M) / B(M) \xrightarrow{H} \Omega_{\omega}(M ; T M) \rightarrow H^{*+1}(M) \rightarrow 0 \tag{5}
\end{equation*}
$$

where now $\Omega_{\omega}(M ; T M)$ is the graded Lie subalgebra of all $K \in \Omega^{k}(M ; T M)$ such that for the Lie derivative along K we have $\mathcal{L}_{K} \omega=0$ and $K+\left((-1)^{k+1} /(k+1)\right) \times$ $\rho\left(i_{K} \omega\right)=0$, and where on the De Rham cohomology spaces we put the brackets 0 .

See [5] for the proof of this theorem and for more information. The step from the sequence (4) to (5) was noticed in [8]. Parts of this theorem were reproved by a different method in [1]. We just note here that on $\Omega(M)$ itself the bracket $\{,\}_{\rho}^{1}$ is graded anticommutative, but does not satisfy the graded Jacobi identity, whereas a second form, $\{\varphi, \psi\}_{\rho}^{2}=\mathcal{L}_{H(\varphi)} \psi$, satisfies the graded Jacobi identity but is not graded anticommutative, and they differ by something exact.
3. THE FRÖLICHER-NIJENHUIS BRACKET ON $\Omega\left(T^{*} M ; T\left(T^{*} M\right)\right)$
3.1. Let M be a smooth manifold. We consider the cotangent bundle $\pi: T^{*} M \rightarrow$
M, the Liouville form $\Theta_{M} \in \Omega^{1}\left(T^{*} M\right)$, given by $\Theta_{M}(\xi)=\left\langle\pi_{T^{*} M} \xi, T\left(\pi_{M}\right) \cdot \xi\right\rangle_{T M}$, and the canonical symplectic form $\omega_{M}=-d \Theta_{M}$.

The space $\Gamma(S T M)$ of symmetric contravariant tensor fields carries a natural differential concomitant which was found by Schouten [13] and which for $X_{i}, Y_{j} \in \mathfrak{X}(M)$ and for $f, g \in C^{\infty}(M, \mathbb{R})$ is given by (see [7])

$$
\begin{align*}
& {[f, g]=0} \tag{1}\\
& {\left[X_{1} \vee \cdots \vee X_{k}, Y_{1} \vee \cdots \vee Y_{l}\right]} \\
& \quad=\sum_{i, j}\left[X_{i}, Y_{j}\right] \vee X_{1} \vee \ldots \widehat{X_{i}} \cdots \vee X_{k} \vee Y_{1} \vee \ldots \widehat{Y_{j}} \cdots \vee Y_{l}, \\
& {\left[f, Y_{1} \vee \cdots \vee Y_{l}\right]=\sum_{j} d f\left(Y_{j}\right) . Y_{1} \vee \ldots \widehat{Y_{j}} \cdots \vee Y_{l} .}
\end{align*}
$$

Obviously $\Gamma\left(S^{*+1} T M\right)$ is a Lie algebra (with grading $*$, but not a graded Lie algebra). Any symmetric multivector field $U \in \Gamma\left(S^{k} T M\right)$ may be viewed as a function on $T^{*} M$ which is homogeneous of degree k on each fiber. So we have a linear injective mapping

$$
\begin{aligned}
& \pi^{*}: \Gamma\left(S^{k} T M\right) \rightarrow C^{\infty}\left(T^{*} M, \mathbb{R}\right) \\
& \left(\pi^{*} U\right)(\varphi)=\left\langle\varphi^{k}, U\right\rangle_{T M} .
\end{aligned}
$$

It is well known that π^{*} is a homomorphism of Lie algebras, where on $C^{\infty}\left(T^{*} M, \mathbb{R}\right)$ we consider the canonical Poisson bracket $\{$,$\} induced by \rho=$ ω_{M}^{-1}. See also 3.5(2).
3.2. We consider the pullback $\pi^{*}: \Omega(M) \rightarrow \Omega\left(T^{*} M\right)$, and we extend it to the linear mapping

$$
\begin{align*}
& \pi^{*}: \Gamma\left(\Lambda^{k} T^{*} M \otimes S^{\prime} T M\right) \rightarrow \Omega^{k}\left(T^{*} M\right) \\
& \left(\pi^{*} A\right)_{\varphi}\left(\xi_{1}, \ldots, \xi_{k}\right)=\left\langle\varphi \vee \cdots \vee \varphi, A\left(T \pi \cdot \xi_{1}, \ldots, T \pi \cdot \xi_{k}\right)\right\rangle_{T M} \tag{1}
\end{align*}
$$

The space $\Gamma\left(\Lambda T^{*} M \otimes S T M\right)=\bigoplus_{k, l} \Gamma\left(\Lambda^{k} T^{*} M \otimes S^{l} T M\right)$ is a graded commutative algebra with respect to the degree k, and $\pi^{*}: \Gamma\left(\Lambda T^{*} M \otimes S T M\right) \rightarrow$ $\Omega\left(T^{*} M\right)$ is obviously a homomorphism with respect to the 'wedge' products. In the following we will always write π^{*} in front of any tensor field on M which contains vector field components, but we will suppress it if we consider pullbacks of functions or differential forms to $T^{*} M$.

Lemma. (2) For each $k \geq 0$ and for $l>0$ the mapping

$$
\begin{aligned}
h: \Gamma\left(\Lambda^{k} T^{*} M \otimes S^{l} T M\right) & \xrightarrow{\pi^{*}} \Omega^{k}\left(T^{*} M\right) \rightarrow \frac{\Omega^{k}\left(T^{*} M\right)}{B^{k}\left(T^{*} M\right)} \\
& \xrightarrow{H} \Omega^{k}\left(T^{*} M ; T\left(T^{*} M\right)\right)
\end{aligned}
$$

is injective.
(3) For $l-0$ the mapping

$$
\Omega(M) \xrightarrow{\pi^{*}} \Omega\left(T^{*} M\right) \rightarrow \frac{\Omega\left(T^{*} M\right)}{B\left(T^{*} M\right)}
$$

induces an injective linear mapping

$$
\frac{\Omega(M)}{B(M)} \rightarrow \frac{\Omega\left(T^{*} M\right)}{B\left(T^{*} M\right)}
$$

(4) Let $I \in \mathfrak{X}\left(T^{*} M\right)$ be the vertical homothetic vector field on $T^{*} M$, given by $I(\varphi)=\partial /\left.\partial t\right|_{1} t \varphi$. Then for each $l \geq 0$ the image of the linear mapping

$$
\pi^{*}: \Gamma\left(\Lambda^{k} T^{*} M \otimes S^{l} T M\right) \rightarrow \Omega^{k}\left(T^{*} M\right)
$$

is the subspace consisting of all horizontal differential forms $\Phi \in \Omega\left(T^{*} M\right)$ which satisfy $\mathcal{L}_{I} \Phi=$ l. Φ.

Proof. Since $\pi: T^{*} M \rightarrow M$ is a homotopy equivalence with homotopy inverse the zero section, the pullback operator induces an injective linear mapping π^{*} : $\Omega(M) / B(M) \rightarrow \Omega\left(T^{*} M\right) / B\left(T^{*} M\right)$. This proves (3).

Now let $0 \neq A \in \Gamma\left(A^{k} T^{*} M \otimes S^{l} T M\right)$. We consider the vertical vector field $I \in \mathfrak{X}\left(T^{*} M\right), I(\varphi)=v l(\varphi, \varphi)=\partial /\left.\partial t\right|_{1} t \varphi$. The flow of I is given by the vertical homotheties $\mathrm{Fl}_{t}^{I}(\varphi)=e^{t} \varphi$, we have $\left(\mathrm{Fl}_{t}^{I}\right)^{*} \pi^{*} A=e^{l t} \pi^{*} A$, and thus

$$
i_{I} d \pi^{*} A+0=\mathcal{L}_{I} \pi^{*} A=\left.\frac{d}{d t}\right|_{0}\left(\mathrm{Fl}_{t}^{I}\right)^{*} \pi^{*} A=\left.\frac{d}{d t}\right|_{0} e^{l t} \pi^{*} A=l \pi^{*} A
$$

which is not 0 for $l>0$. Since $\rho: \Omega^{>0}\left(T^{*} M\right) \rightarrow \Omega\left(T^{*} M ; T\left(T^{*} M\right)\right)$ is injective, (2) follows.

We also conclude the inclusion \subseteq in (4). Since the assertion is local on M, for the converse inclusion \supseteq we may use local coordinates on $T^{*} Q \subset T^{*} M$ as in the beginning of the proof of Lemma 3.3. Then $I \mid Q=\sum p_{i}\left(\partial / \partial p_{i}\right)$ and any horizontal form is a sum of expression like $\Phi=f(q, p) d q^{i_{1}} \wedge \cdots \wedge d q^{i_{p}} \in \Omega^{P}\left(T^{*} Q\right)$. Then $\mathcal{L}_{I} \Phi=l . \Phi$ means $\mathcal{L}_{I} f=l . f$ from which we conclude that in multi-index notation we have $f(q, p) \sum_{|\alpha|=l} f_{\alpha}(q) p^{\alpha}$, which implies the result, since we may use a partition of unity on M.
3.3. Lemma. Collection of formulas. In the following $X, Y \in \mathfrak{X}(M)$ are vector fields, $\varphi \subset \Omega^{p}(M), \psi \in \Omega^{q}(M), K \in \Omega^{k}(M ; T M), L \subset \Omega^{l}(M ; T M)$, and $f \subset$ $\Omega^{0}(M)$. Then the following formulas hold on $T^{*} M$. We drop π^{*} in front of pullbacks of differential forms.
(1) $[h X, h Y]=h[X, Y]$.
(2) $[\rho \varphi, \rho \psi]=0$, thus also $[h \varphi, \rho \psi]=[\rho d \psi, \rho \varphi]=0$, etc.
(3) $[h X, \rho \varphi]=\rho \mathcal{L}_{X} \varphi$, so also $[h X, h \varphi]=[h X, \rho d \varphi]=h \mathcal{L}_{X} \varphi$.
(4) $i_{\rho \varphi} \psi=0$ and $i_{\rho \varphi} \rho \psi=0$, so also $\mathcal{L}_{\rho \varphi} \psi=0$, etc.
(5) $\mathcal{L}_{\rho \varphi} \pi^{*} X=-i_{X} \varphi$, so also $\mathcal{L}_{h \varphi} \pi^{*} X=-i_{X} d \varphi$.
(6) $\mathcal{L}_{h K} f=\mathcal{L}_{K} f$, so also $\mathcal{L}_{h K} \varphi=\mathcal{L}_{K} \varphi$. Similarly $i_{h K} \varphi=i_{K} \varphi$.
(7) $[h L, h f]=h \mathcal{L}_{L} f$.
(8) $\mathcal{L}_{h K} \pi^{*} L=\pi^{*}[K, L]+(-1)^{(k-1)!} d \pi^{*}\left(i_{L} K\right)$.
(9) $d \mathcal{L}_{h K} \pi^{*} L=(-1)^{k} \mathcal{L}_{h K} d \pi^{*} L=d \pi^{*}[K, L]$.
(10) $i_{\rho \pi^{*} K} \psi=0$, so also $\mathcal{L}_{\rho \pi^{*} K} \psi=0$.
(11) $\mathcal{L}_{\rho \pi^{*} K} \pi^{*} L=-(-1)^{(k-1) l} \pi^{*} i_{L} K$.
(12) $i_{h K} \pi^{*} L=\pi^{*} i_{K} L$.
(13) $i_{h K} d \pi^{*} L=\pi^{*}[K, L]-(-1)^{k} d \pi^{*}\left(i_{K} L+(-1)^{(k-1)(l-1)} i_{L} K\right)$.
(14) $i_{h X} \rho \psi=-\rho i_{X} \psi$.
(15) $\mathcal{L}_{h \varphi} \pi^{*} L=-(-1)^{p l} i_{L} d \varphi$.
(16) $\left[\rho \pi^{*} K, h \psi\right]=\rho\left(i_{K} d \psi\right)-(-1)^{k} i_{h K} h \psi$.

Proof. Let us fix local coordinates q^{1}, \ldots, q^{m} on an open subset Q of M and induced coordinates q^{i}, p_{j} on $T^{*} Q \subset T^{*} M$, so that the Liouville form $\Theta \mid T^{*} Q=$ $\sum p_{i} d q^{i}$ and the symplectic form is given by $\omega=-d \Theta=\sum d q^{i} \wedge d p_{i}$. We have

$$
\begin{array}{rlr}
\omega\left(\frac{\partial}{\partial q^{i}}\right)=d p_{i} & \rho\left(d p_{i}\right)=\frac{\partial}{\partial q^{i}} \\
\omega\left(\frac{\partial}{\partial p_{i}}\right)=-d q^{i} & \rho\left(d q^{i}\right)=-\frac{\partial}{\partial p_{i}}
\end{array}
$$

so that for $f \in C^{\infty}(M, \mathbb{R}), \varphi \in \Omega^{p}(M)$, and $X \in \mathfrak{X}(M)$ we get the following local formulas on $T^{*} Q \subset T^{*} M$:

$$
\begin{aligned}
h f & =\rho(d f)=-\sum \frac{\partial f}{\partial q^{i}} \frac{\partial}{\partial p_{i}} \\
h \varphi & =\rho\left(\sum \frac{\partial \varphi_{i_{1} \cdots i_{p}}}{\partial q^{i}} d q^{i} \wedge d q^{i_{1}} \wedge \cdots \wedge d q^{i_{p}}\right) \\
& =\sum \tilde{\varphi}_{j_{1} \cdots j_{p}, j}(q) d q^{j_{1}} \wedge \cdots \wedge d q^{j_{p}} \otimes \frac{\partial}{\partial p_{j}} \\
h X & =-\sum \frac{\partial X^{i}}{\partial q^{m}} p_{i} \frac{\partial}{\partial p_{m}}+\sum X^{i} \frac{\partial}{\partial q^{i}} .
\end{aligned}
$$

From this (1) and (2) follow by straightforward computation, whereas (3) follows from contemplating 2.1(1).
(3) then can be proved as follows:

$$
\begin{aligned}
{[h X,} & \left.\rho\left(f_{0} d f_{1} \wedge \cdots \wedge d f_{p}\right)\right] \\
= & \mathcal{L}_{h X}\left(\sum_{i}(-1)^{i-1} f_{0} d f_{1} \wedge \cdots \wedge \rho d f_{i} \wedge \cdots \wedge d f_{p}\right) \\
= & \mathcal{L}_{h X} f_{0} \cdot \sum_{i}(-1)^{i-1} d f_{1} \wedge \cdots \wedge h f_{i} \wedge \cdots \wedge d f_{p} \\
& +\sum_{1 \leq j<i}(-1)^{i-1} f_{0} \cdot d f_{1} \wedge \cdots \wedge \mathcal{L}_{h X} d f_{j} \wedge \cdots \wedge h f_{i} \wedge \cdots \wedge d f_{p} \\
& +\sum_{i}(-1)^{i-1} f_{0} \cdot d f_{1} \wedge \cdots \wedge \mathcal{L}_{h X} h f_{i} \wedge \cdots \wedge d f_{p} \\
& +\sum_{1 \leq i<j}(-1)^{i-1} f_{0} \cdot d f_{1} \wedge \cdots \wedge h f_{i} \wedge \cdots \wedge \mathcal{L}_{h X} d f_{j} \wedge \cdots \wedge d f_{p} \\
= & \rho\left(\mathcal{L}_{X}\left(f_{0} d f_{1} \wedge \cdots \wedge d f_{p}\right)\right)
\end{aligned}
$$

where we also use the following special cases of (3), which are immediate from the local formulas:

$$
\begin{aligned}
\mathcal{L}_{h X} f & =\left(-\sum \frac{\partial X^{k}}{\partial q^{m}} p_{k} \frac{\partial}{\partial p_{m}}+\sum X^{i} \frac{\partial}{\partial q^{i}}\right) f=\mathcal{L}_{X} f \\
\mathcal{L}_{h X} d f & =d \mathcal{L}_{h X} f=d \mathcal{L}_{X} f=\mathcal{L}_{X} d f \\
\mathcal{L}_{h X} h f & =\left[-\sum \frac{\partial X^{k}}{\partial q^{m}} p_{k} \frac{\partial}{\partial p_{m}}+\sum X^{i} \frac{\partial}{\partial q^{i}},-\sum \frac{\partial f}{\partial q^{i}} \frac{\partial}{\partial p_{i}}\right] \\
& =h \mathcal{L}_{X} f=\rho \mathcal{L}_{X} d f .
\end{aligned}
$$

(5) is seen as follows:

$$
\begin{aligned}
& \mathcal{L}\left(\rho\left(f_{0} d f_{1} \wedge \cdots \wedge d f_{p}\right)\right) \pi^{*} X \\
& \quad=i\left(\rho\left(f_{0} d f_{1} \wedge \cdots \wedge d f_{p}\right)\right) d \pi^{*} X+0 \\
& \quad=i\left(\sum_{i}(-1)^{i-1} f_{0} d f_{1} \wedge \ldots \widehat{d f_{i}} \cdots \wedge d f_{p} \otimes h f_{i}\right) d \pi^{*} X \\
& \quad=-\sum_{i}(-1)^{i-1} f_{0} d f_{1} \wedge \cdots \wedge i_{X} d f_{i} \wedge \cdots \wedge d f_{p} \\
& \quad=-i_{X}\left(f_{0} d f_{1} \wedge \cdots \wedge d f_{p}\right)
\end{aligned}
$$

where we use the special case

$$
\begin{aligned}
i(h f) d \pi^{*} X & =i\left(-\sum \frac{\partial f_{i}}{\partial q^{j}} \frac{\partial}{\partial p_{j}}\right)\left(\sum \frac{\partial X^{k}}{\partial q^{m}} p_{k} d q^{m}+\sum X^{k} d p_{k}\right) \\
& =-\mathcal{L}_{X} f=-i_{X} d f
\end{aligned}
$$

For the proof of the remaining formulas we assume that $K=\varphi \otimes X$ for $\varphi \in$ $\Omega^{k}(M)$ with $d \varphi=0$, and $L=\psi \otimes Y$ for $\psi \in \Omega^{l}(M)$ with $d \psi=0$, where $X, Y \in$ $\mathfrak{X}(M)$. We may do this since locally $\Omega(M ; T M)$ is linearly generated by such elements. We will use the formulas of 2.1 without explicitly mentioning them. Under this assumptions we have

$$
\begin{aligned}
& h(\varphi \otimes X)=\rho d \pi^{*}(\varphi \otimes X)=-d \pi^{*} X \wedge \rho \varphi+\varphi \wedge h X \\
& \mathcal{L}(\varphi \otimes X)=\varphi \wedge \mathcal{L}_{X}
\end{aligned}
$$

(6) follows from (4) via

$$
\begin{aligned}
\mathcal{L}_{h K} f & =i_{h K} d f=i\left(-d \pi^{*} X \wedge \rho \varphi+\varphi \wedge h X\right) d f \\
& =-d \pi^{*} X \wedge i_{\rho \varphi} d f+\varphi \wedge i_{h X} d f \\
& =0+\varphi \wedge i_{X} d f=i_{K} d f=\mathcal{L}_{K} f
\end{aligned}
$$

Then we get in turn

$$
\begin{aligned}
& i_{h K}\left(f_{0} d f_{1} \wedge \cdots \wedge d f_{p}\right) \\
& \quad=\sum_{i}(-1)^{i-1} f_{0} d f_{1} \wedge \ldots \wedge i_{h K} d f_{i} \wedge \cdots \wedge d f_{p} \otimes h f_{i} \\
& \quad=i_{K}\left(f_{0} d f_{1} \wedge \cdots \wedge d f_{p}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L}_{h K} d f=(-1)^{k} d \mathcal{L}_{h K} f=(-1)^{k} d \mathcal{L}_{K} f=\mathcal{L}_{K} d f, \\
& \mathcal{L}_{h K}\left(f_{0} d f_{1} \wedge \cdots \wedge d f_{p}\right) \\
& \left.\quad=\mathcal{L}_{h K} f_{0} \cdot d f_{1} \wedge \cdots \wedge d f_{p}\right) \\
& \quad+\sum_{i}(-1)^{i-1} f_{0} d f_{1} \wedge \ldots \wedge \mathcal{L}_{h K} d f_{i} \wedge \cdots \wedge d f_{p} \otimes h f_{i} \\
& \quad=\mathcal{L}_{K}\left(f_{0} d f_{1} \wedge \cdots \wedge d f_{p}\right) .
\end{aligned}
$$

(7) can be seen as follows, using (3), (2), and (5):

$$
\begin{aligned}
{[h L, h f]=} & {[h(\psi \otimes Y), h f]=\left[\psi \wedge h Y-d \pi^{*} Y \wedge \rho \psi, h f\right] } \\
= & \psi \wedge[h Y, h f]-\mathcal{L}_{h f} \psi \wedge h Y-0 \\
& -d \pi^{*} Y \wedge[\rho \psi, h f]+\mathcal{L}_{h f} d \pi^{*} Y \wedge \rho \psi+0 \\
= & \psi \wedge h \mathcal{L}_{Y} f-d i_{Y} d f \wedge \rho \psi=h\left(\psi \wedge \mathcal{L}_{Y} f\right)=h \mathcal{L}_{L} f .
\end{aligned}
$$

(8) We start with the following computation, using (4), (5), and $i_{h X} \psi=i_{X} \psi$.

$$
\begin{aligned}
\mathcal{L}_{h K} & \pi^{*} L \\
= & i_{h K} d \pi^{*} L-(-1)^{k-1} d i_{h K} \pi^{*} L \\
= & i\left(-d \pi^{*} X \wedge \rho \varphi+\varphi \wedge h X\right)\left((-1)^{\prime} \psi \wedge d \pi^{*} Y\right) \\
& +(-1)^{k} d i\left(-d \pi^{*} X \wedge \rho \varphi+\varphi \wedge h X\right)\left(\psi \wedge \pi^{*} Y\right) \\
= & -(-1)^{\prime} d \pi^{*} X \wedge i_{\rho \varphi} \psi \wedge d \pi^{*} Y-(-1)^{l+(k-2) l} d \pi^{*} X \wedge \psi \wedge i_{\rho \varphi} d \pi^{*} Y \\
& +(-1)^{l} \varphi \wedge i_{h X} \psi \wedge d \pi^{*} Y+\varphi \wedge \psi \wedge i_{h X} d \pi^{*} Y \\
& +(-1)^{k} d\left(-d \pi^{*} X \wedge i_{\rho \varphi} \psi \wedge \pi^{*} Y+\varphi \wedge i_{h X} \psi \wedge \pi^{*} Y\right) \\
= & 0+(-1)^{(k-1) l} d \pi^{*} X \wedge \psi \wedge i_{Y} \varphi+(-1)^{l} \varphi \wedge i_{X} \psi \wedge d \pi^{*} Y \\
& +\varphi \wedge \psi \wedge \pi^{*}[X, Y]+0+\varphi \wedge d i_{X} \psi \wedge \pi^{*} Y-(-1)^{l} \varphi \wedge i_{X} \psi \wedge d \pi^{*} Y \\
= & \varphi \wedge \psi \wedge \pi^{*}[X, Y]+\varphi \wedge d i_{X} \psi \wedge \pi^{*} Y-(-1)^{k+l_{i}} i_{Y} \varphi \wedge \psi \wedge d \pi^{*} X,
\end{aligned}
$$

where we also used

$$
\begin{aligned}
\mathcal{L}_{h X} & \pi^{*} Y \\
& =i_{h X} d \pi^{*} Y \\
& =i\left(-\sum \frac{\partial X^{i}}{\partial q^{m}} p_{i} \frac{\partial}{\partial p_{m}}+\sum X^{i} \frac{\partial}{\partial q^{i}}\right)\left(\sum \frac{\partial Y^{k}}{\partial q^{n}} p_{k} d q^{n}+\sum Y^{k} d p_{k}\right) \\
& =\sum\left(X^{i} \frac{\partial Y^{k}}{\partial q^{i}}-Y^{i} \frac{\partial X^{k}}{\partial q^{i}}\right) p_{k}=\pi^{*}[X, Y] .
\end{aligned}
$$

Then we get

$$
\begin{aligned}
& \pi^{*}[K, L] \\
& \quad=\pi^{*}[\varphi \otimes X, \psi \otimes Y], \quad \text { use now } 2.1(2) \\
& \quad=\varphi \wedge \psi \wedge \pi^{*}[X, Y]+\varphi \wedge \mathcal{L}_{X} \psi \wedge \pi^{*} Y-\mathcal{L}_{Y} \varphi \wedge \psi \wedge \pi^{*} X+0+0,
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L}_{h K} \pi^{*} L-\pi^{*}[K, L] \\
& \quad=d i_{Y} \varphi \wedge \psi \wedge \pi^{*} X-(-1)^{k+l} i_{Y} \varphi \wedge \psi \wedge d \pi^{*} X \\
& \quad=d\left((-1)^{(k-1) l} \psi \wedge i_{Y} \varphi \wedge \pi^{*} X\right)=(-1)^{(k-1) l} d \pi^{*}\left(i_{L} K\right)
\end{aligned}
$$

(9) follows from (8).
(10) $i\left(\rho \pi^{*} K\right) \psi=i\left(\pi^{*} X . \rho \varphi\right) \psi=\pi^{*} X . i_{\mu \varphi} \psi=0$.
(11) We compute in turn

$$
\begin{aligned}
\mathcal{L}_{\rho \pi^{*} K} \pi^{*} Y & =i\left(\pi^{*} X \wedge \rho \varphi\right) d \pi^{*} Y=\pi^{*} X \wedge \mathcal{L}_{\rho \varphi} \pi^{*} Y \\
& =\pi^{*} X \wedge i_{Y} \varphi=\pi^{*} i_{Y} K \\
\mathcal{L}_{\rho \pi^{*} K} \pi^{*} L & =\mathcal{L}_{\rho \pi^{*} K}\left(\pi^{*} Y \wedge \psi\right)=\mathcal{L}_{\rho \pi^{*} K} \pi^{*} Y \wedge \psi+\pi^{*} Y \wedge \mathcal{L}_{\rho \pi^{*} K} \psi \\
& =-\pi^{*}\left(i_{Y} K\right) \wedge \psi+0 \\
& =-(-1)^{(k-1) l^{*} \pi_{L} K .}
\end{aligned}
$$

(12) We have in turn

$$
\begin{aligned}
i_{h X} \pi^{*} L & =i\left(-\sum \frac{\partial X^{i}}{\partial q^{m}} p_{i} \frac{\partial}{\partial p_{m}}+\sum X^{i} \frac{\partial}{\partial q^{i}}\right)\left(\psi \wedge \pi^{*} Y\right) \\
& =i_{X} \psi \wedge \pi^{*} Y=\pi^{*} i_{X} L \\
i_{h K} \pi^{*} L & =i\left(-d \pi^{*} X \wedge \rho \varphi+\varphi \wedge h X\right)\left(\psi \wedge \pi^{*} Y\right) \\
& =-d \pi^{*} X \wedge i_{\rho \varphi} \psi \wedge \pi^{*} Y+\varphi \wedge i_{h X} \psi \wedge \pi^{*} Y \\
& =0+\varphi \wedge i_{X} \psi \wedge \pi^{*} Y=\pi^{*} i_{K} L .
\end{aligned}
$$

(13) From (8) we get

$$
\begin{aligned}
i_{h K} d \pi^{*} L & =\mathcal{L}_{h K} \pi^{*} L+(-1)^{k-1} d i_{h K} \pi^{*} L \\
& =\pi^{*}[K, L]-(-1)^{k} d \pi^{*}\left(i_{K} L+(-1)^{(k-1)(l-1)} i_{L} K\right) .
\end{aligned}
$$

(14) We just compute

$$
\begin{aligned}
i_{h X} & \rho\left(f_{0} d f_{1} \wedge \cdots \wedge d f_{q}\right) \\
= & i_{h X}\left(\sum(-1)^{j-1} f_{0} d f_{1} \wedge \cdots \wedge h f_{j} \wedge \cdots \wedge d f_{q}\right) \\
= & \sum_{k<j}(-1)^{k+j} f_{0} d f_{1} \wedge \ldots \wedge i_{h X} d f_{k} \wedge \cdots \wedge h f_{j} \wedge \cdots \wedge d f_{q} \\
& \quad+\sum_{k>j}(-1)^{k+j-1} f_{0} d f_{1} \wedge \cdots \wedge h f_{j} \wedge \cdots \wedge i_{h X} d f_{k} \wedge \cdots \wedge d f_{q} \\
= & -\rho i_{X}\left(f_{0} d f_{1} \wedge \cdots \wedge d f_{q}\right)
\end{aligned}
$$

(15) This is an easy consequence of (4) and (5), namely

$$
\begin{aligned}
\mathcal{L}_{h \varphi} \pi^{*} L & =\mathcal{L}_{h \varphi}\left(\psi \wedge \pi^{*} Y\right)=0+(-1)^{p l} \psi \wedge \mathcal{L}_{h \varphi} i^{*} Y \\
& =-(-1)^{p l} \psi \wedge i_{Y} \varphi=-(-1)^{p l} i_{L} d \varphi
\end{aligned}
$$

(16) This can be seen by summing the following evaluations:

$$
\begin{aligned}
& {\left[\rho \pi^{*} K, h \psi\right]} \\
& \quad=\left[\rho \pi^{*}(\varphi \otimes X), h \psi\right]=\left[\rho \varphi \cdot \pi^{*} X, h \psi\right] \\
& \quad=\pi^{*} X \wedge[\rho \varphi, h \psi]-(-1)^{(k-1) q} \mathcal{L}_{h \psi} \pi^{*} X \wedge \rho \varphi+(-1)^{k-1} d \pi^{*} X \wedge i_{\rho \varphi} h \psi \\
& \quad=\rho \varphi \wedge i_{X} d \psi, \\
& \rho\left(i_{K} d \psi\right)=\rho\left(\varphi \wedge i_{X} d \psi\right)=\rho \varphi \wedge i_{X} d \psi+(-1)^{k} \varphi \wedge \rho i_{X} d \psi, \\
& i_{h K} h \psi=i\left(-d \pi^{*} X \wedge \rho \varphi+\varphi \wedge h X\right)(\rho d \psi) \\
& \quad=-d \pi^{*} X \wedge i_{\rho \varphi} \rho d \psi+\varphi \wedge i_{h X} \rho d \psi=0-\varphi \wedge i_{h X} \rho d \psi .
\end{aligned}
$$

3.4. The extended insertion

For $A \in \Omega^{k}\left(M ; S^{l} T M\right)$ we define now the insertion operator

$$
\begin{aligned}
& i_{A}: \Omega^{p}\left(M ; S^{m} T M\right) \rightarrow \Omega^{p+k-1}\left(M ; S^{m+l-1} T M\right) \\
& i\left(\varphi \otimes X_{1} \vee \cdots \vee X_{k}\right)(\psi \otimes V) \\
& \quad=\varphi \wedge \sum_{j} i_{X_{j}} \psi \otimes X_{1} \vee \ldots \widehat{X_{j}} \cdots \vee X_{k} \vee V
\end{aligned}
$$

This is a graded derivation of degree $k-1$ of the graded commutative algebra $\bigoplus_{m \geq 0} \Omega^{m}(M, S T M)$ which vanishes on the subalgebra $\Gamma(S T M)$.

Lemma. More formulas. For $A \in \Omega^{k}\left(M ; S^{l} T M\right)$, where $l>0$, and $\psi \in \Omega^{q}(M)$ we have on $T^{*} M$
(1) $\mathcal{L}_{h \psi} \pi^{*} A=-(-1)^{q k} \pi^{*} i_{A} d \psi$.
(2) $\left[\rho \pi^{*} A, h \psi\right]=\rho \pi^{*} i_{A} d \psi-(-1)^{k} i_{h A} h \psi$.

Proof. (1) We prove this by induction on l. For $l=1$ this is $3.3(15)$. For the induction we compute as follows:

$$
\begin{aligned}
& \mathcal{L}_{h \psi} \pi^{*}(X \wedge A) \\
& \quad=\mathcal{L}_{h \psi} \pi^{*} X \wedge \pi^{*} A+\pi^{*} X \wedge \mathcal{L}_{h \psi} \pi^{*} A \\
& \quad=-i_{X} d \psi \wedge \pi^{*} A-(-1)^{q k} \pi^{*} X \wedge \pi^{*} i_{A} d \psi \\
& \quad=-(-1)^{q k} \pi^{*}\left(A \wedge i_{X} d \psi+X \wedge i_{A} d \psi\right)=-(-1)^{q k} \pi^{*} i_{X \wedge A} d \psi
\end{aligned}
$$

(2) We use again induction on l. For $l=1$ this is 3.3(16). The left-hand side equals:

$$
\begin{aligned}
& {\left[\rho \pi^{*}(X \wedge A), h \psi\right] } \\
&= {\left[\pi^{*} X \wedge \rho \pi^{*} A, h \psi\right] } \\
&= \pi^{*} X \wedge\left[\rho \pi^{*} A, h \psi\right]-(-1)^{(k-1) q} \mathcal{L}_{h \psi} \pi^{*} X \wedge \rho \pi^{*} A \\
&+(-1)^{k} d \pi^{*} X \wedge i_{\rho \pi^{*} A} h \psi \\
&= \pi^{*} X \wedge \rho \pi^{*} i_{A} d \psi-(-1)^{k} \pi^{*} X \wedge \pi^{*} i_{h A} h \psi \\
&+(-1)^{(k-1) q_{i}} i_{X} d \psi \wedge \pi^{*} A+(-1)^{k} d \pi^{*} X \wedge i_{\rho \pi^{*} A} h \psi
\end{aligned}
$$

For the right-hand side we get:

$$
\begin{aligned}
& \rho \pi^{*} i_{X \wedge A} d \psi-(-1)^{k} i_{h(X \wedge A)} h \psi \\
&= \rho \pi^{*}\left(X \wedge i_{A} d \psi+A \wedge i_{X} d \psi\right) \\
&-(-1)^{k} i\left(h X \wedge \pi^{*} A-d \pi^{*} X \wedge \rho \pi^{*} A+\pi^{*} X \wedge h A\right) h \psi \\
&= \pi^{*} X \wedge \rho \pi^{*} i_{A} d \psi+\rho \pi^{*} A \wedge i_{X} d \psi-(-1)^{k} \pi^{*} A \wedge \rho i_{X} d \psi \\
&-(-1)^{k} \pi^{*} A \wedge i_{h X} h \psi+(-1)^{k} d \pi^{*} X \wedge i_{\rho \pi^{*} A} h \psi \\
&-(-1)^{k} \pi^{*} X \wedge i_{h A} h \psi .
\end{aligned}
$$

Using 3.3(14) we see that it equals the left-hand side.
3.5. Theorem. (1) The linear injective mapping

$$
\begin{aligned}
h: \Gamma\left(\Lambda T^{*} M \otimes T M\right)=\Omega(M ; T M) & \xrightarrow{\pi^{*}} \Omega\left(T^{*} M\right) \\
& \xrightarrow{H} \Omega\left(T^{*} M ; T\left(T^{*} M\right)\right)
\end{aligned}
$$

is a homomorphism for the Frölicher-Nijenhuis brackets.
(2) The linear mapping

$$
h: \Gamma(S T M) \xrightarrow{\pi^{*}} \Omega\left(T^{*} M\right) \xrightarrow{H} \Omega\left(T^{*} M ; T\left(T^{*} M\right)\right)
$$

is a homomorphism from the symmetric Schouten bracket to the FrölicherNijenhuis bracket. The kernel of h is $H^{0}(M)$.
(3) For differential forms $\varphi, \psi \in \Omega(M)$ we have

$$
[h \varphi, h \psi]=0 .
$$

(4) For $A \in \Omega(M ; S T M)$ and $\psi \in \Omega(M)$ we have

$$
\begin{aligned}
& {[h A, h \psi]=h i_{A} d \psi, \text { where }} \\
& i\left(\varphi \otimes X_{1} \vee \cdots \vee X_{k}\right) \psi:=\varphi \wedge\left(\sum_{j} i_{X_{j}} \psi \otimes X_{1} \vee \ldots \widehat{X_{j}} \cdots \vee X_{k}\right) .
\end{aligned}
$$

(5) For $\operatorname{dim} M \geq 2$, in general $\left[h \Omega^{k_{1}}\left(M ; S^{l_{1}} T M\right), h \Omega^{k_{2}}\left(M ; S^{l_{2}} T M\right)\right]$ does not lie in the image of h, if $k_{1}, l_{1} \geq 1$ and $l_{2} \geq 2$ (or under the symmetric condition).

Proof. (1) We have to show that $[h K, h L]=h[K, L]$ for $K \in \Omega^{k}(M ; T M)$ and $L \in \Omega^{l}(M ; T M)$ and we do this by induction on $k+l$. The case of vector fields $k+l=0$ is well known, see $3.3(1)$. Since the question is local on M and since $\int \Omega^{k+1}(M ; T M)$ is locally linearly generated by $d f \wedge K$ for $f \in \Omega^{0}(M)$ and $K \in$ $\Omega^{k}(M ; T M)$ it suffices to check that $[h K, h L]=h[K, L]$ implies $[h(d f \wedge K), h L]=$ $h[d f \wedge K, L]$. We have

$$
h(d f \wedge K)=\rho d\left(d f \wedge \pi^{*} K\right)=-d \pi^{*} K \wedge h f+d f \wedge h K
$$

Using twice 2.1(4) we get then

$$
\begin{aligned}
{[h(d f \wedge K), h L]=} & d f \wedge[h K, h L]-(-1)^{(1+k) l} \mathcal{L}_{h L} d f \wedge h K+0 \\
& -d \pi^{*} K \wedge[h f, h L]+(-1)^{(1+k) l} \mathcal{L}_{h L} d \pi^{*} K \wedge h f-0 \\
= & d f \wedge h[K, L]-(-1)^{(1+k) l} \mathcal{L}_{L} d f \wedge h K \\
& +d \pi^{*} K \wedge h \mathcal{L}_{L} f+(-1)^{k l} d \pi^{*}[L, K] \wedge h f
\end{aligned}
$$

where we used in turn induction, 3.3(6), 3.3(7), and 3.3(8). On the other hand we have again by $2.1(4)$

$$
\begin{aligned}
h[d f \wedge K, L]= & \rho d \pi^{*}\left(d f \wedge[K, L]-(-1)^{(1+k) l} \mathcal{L}_{L} d f \wedge K+0\right) \\
= & -h f \wedge d \pi^{*}[K, L]+d f \wedge h[K, L] \\
& +(-1)^{k l} \rho \mathcal{L}_{L} d f \wedge d \pi^{*} K+(-1)^{k l+l+1} \mathcal{L}_{L} d f \wedge h K
\end{aligned}
$$

which equals the expression for $[h(d f \wedge K), h L]$ from above.
(2) This is well known, and easy to check starting from 3.3(1).
(3) is $3.3(2)$.
(4) First we prove a partial result.

Claim. For $K \in \Omega^{k}(M ; T M)$ and $\psi \in \Omega^{q}(M)$ we have $[h K, h \psi]=h \mathcal{L}_{K} \psi=$ $h i_{K} d \psi$.

To check the claim we use induction on $q=\operatorname{deg} \psi$. For $q=0$ this is 3.3(7). Since the assertion is local on M it suffices to consider $d f \wedge \psi$ for the induction step. In the following computation we use 2.1(4), induction, 3.3(6), and 3.3(7):

$$
\begin{aligned}
{[h K, h(d f \wedge \psi)]=} & {[h K, d f \wedge h \psi-d \psi \wedge h f] } \\
= & (-1)^{k} d f \wedge[h K, h \psi]+\mathcal{L}_{h K} d f \wedge h \psi-0 \\
& -(-1)^{(q+1) k} d \psi \wedge[h K, h f]-\mathcal{L}_{h K} d \psi \wedge h f+0 \\
= & (-1)^{k} d f \wedge h \mathcal{L}_{K} \psi+h \mathcal{L}_{K} d f \wedge h \psi \\
& -(-1)^{(q+1) k} d \psi \wedge h \mathcal{L}_{K} f-\mathcal{L}_{K} d \psi \wedge h f .
\end{aligned}
$$

On the other hand we have by $2.1(3)$

$$
\begin{aligned}
h \mathcal{L}_{K}(d f \wedge \psi)= & h\left((-1)^{k} d \mathcal{L}_{K} f \wedge \psi+(-1)^{k} d f \wedge \mathcal{L}_{K} \psi\right) \\
= & \rho\left(d \mathcal{L}_{K} f \wedge d \psi-(-1)^{k} d f \wedge d \mathcal{L}_{K} \psi\right) \\
= & -h \mathcal{L}_{K} f \wedge d \psi+(-1)^{k} d \mathcal{L}_{K} f \wedge h \psi \\
& -(-1)^{k} h f \wedge d \mathcal{L}_{K} \psi+(-1)^{k} d f \wedge h L_{K} \psi
\end{aligned}
$$

which equals the above expression. So the claim follows.
Now we can extend this result to $A \in \Omega^{k}\left(M ; S^{l} T M\right)$ by induction on l. For $l=1$ this is the claim above. For the induction we compute first the left-hand side, using 2.1(4), the claim, 3.4, induction, and 3.3(14):

$$
\begin{aligned}
& {[h(X . A), h \psi] } \\
&= {\left[h X \wedge \pi^{*} A-d \pi^{*} X \wedge \rho \pi^{*} A+\pi^{*} X \wedge h A, h \psi\right] } \\
&= \pi^{*} A \wedge[h X, h \psi]-(-1)^{k q} \mathcal{L}_{h \psi} \pi^{*} A \wedge h X+(-1)^{k} d \pi^{*} A \wedge i_{h X} h \psi \\
&-d \pi^{*} X \wedge\left[\rho \pi^{*} A, h \psi\right]+(-1)^{k q} \mathcal{L}_{h \psi} d \pi^{*} X \wedge \rho \pi^{*} A-0 \\
&+\pi^{*} X \wedge[h A, h \psi]-(-1)^{k q} \mathcal{L}_{h \psi} \pi^{*} X \wedge h A+(-1)^{k} d \pi^{*} X \wedge i_{h A} h \psi \\
&= \pi^{*} A \wedge h i_{X} d \psi+\pi^{*} i_{A} d \psi \wedge h X-(-1)^{k} d \pi^{*} A \wedge \rho i_{X} d \psi \\
&-d \pi^{*} X \wedge \rho i_{A} d \psi-(-1)^{(k-1) q} d i_{X} d \psi \wedge \rho \pi^{*} A \\
&+\pi^{*} X \wedge h i_{A} d \psi+(-1)^{k q} i_{X} d \psi \wedge h A .
\end{aligned}
$$

The right-hand side is

$$
\begin{aligned}
& h i(X \wedge A) d \psi \\
&= h\left(A \wedge i_{X} d \psi+X \wedge i_{A} d \psi\right) \\
&= \rho\left(d \pi^{*} A \wedge i_{X} d \psi+(-1)^{k} \pi^{*} A \wedge d i_{X} d \psi+d \pi^{*} X \wedge \pi^{*} i_{A} d \psi+\pi^{*} X \wedge d \pi^{*} i_{A} d \psi\right) \\
&= h A \wedge i_{X} d \psi+(-1)^{k} d \pi^{*} A \wedge \rho i_{X} d \psi+(-1)^{k} \rho \pi^{*} A \wedge d i_{X} d \psi \\
&\left.+\pi^{*} A \wedge h i_{X} d \psi+h X \wedge \pi^{*} i_{A} d \psi-d \pi^{*} X \wedge \rho \pi^{*} i_{A} d \psi+\pi^{*} X \wedge h \pi^{*} i_{A} d \psi\right)
\end{aligned}
$$

which equals the left-hand side.
(5) By 3.2(3) the image of $\pi^{*}: \Omega\left(M ; S^{l} T M\right)$ is the space of all horizontal forms $\Phi \in \Omega\left(T^{*} M\right)$ satisfying $\mathcal{L}_{l} \Phi=l . \Phi$. In local coordinates on M we consider then, using the bracket $\{,\}^{1}$ described in 2.3,

$$
\begin{aligned}
& \left\{\pi^{*}\left(d q^{1} \otimes \frac{\partial}{\partial q^{1}}\right), \pi^{*}\left(\frac{\partial}{\partial q^{1}} \frac{\partial}{\partial q^{2}}\right)\right\}^{1} \\
& \quad=\left\{p_{1} d q^{1}, p_{1} p_{2}\right\}^{1}=\left\{p_{1}, p_{1} p_{2}\right\} d q^{1}-\left\{q^{1}, p_{1} p_{2}\right\} d p_{1}=p_{2} d p_{1} \\
& d\left\{p_{1} d q^{1}, p_{1} p_{2}\right\}^{1}=-d p_{1} \wedge d p_{2}
\end{aligned}
$$

Thus $\left\{p_{1} d q^{1}, p_{1} p_{2}\right\}^{1}$ plus something exact can never be horizontal.

REFERENCES

1. Cabras, A. and A.M. Vinogradov - Extensions of the Poisson bracket to differential forms and multi-vector fields. J.G.P. 9, 75-100 (1992).
2. Frölicher, A. and A. Nijenhuis - Theory of vector valued differential forms. Part I. Indagationes Math. 18, 338-359 (1956).
3. Frölicher, A. and A. Nijenhuis - Invariance of vector form operations under mappings. Comm. Math. Helv. 34, 227-248 (1960).
4. Kolář, I., P.W. Michor and J. Slovák - Natural operations in differential geometry. SpringerVerlag, Berlin-Heidelberg-New York (1993).
5. Michor, P.W. - A generalisation of Hamiltonian mechanics. J. Geometry and Physics 2 (2), 67 -- 82 (1985), MR 87k:58093.
6. Michor, P.W. - Remarks on the Frölicher-Nijenhuis bracket. Proceedings of the Conference on Differential Geometry and its Applications. Brno 1986 (D. Krupka and A. Švec, eds.), D. Reidel, 197-220 (1987).
7. Michor, P.M. - Remarks on the Schouten-Nijenhuis bracket. Suppl. Rendiconti del Circolo Matematico di Palermo, Serie II, 16, 208-215 (1987), ZM 646.53013.
8. Monterde, J. - Generalized symplectomorphisms. Differential Geometry, Peñiscola, 1988 (F.J. Carreras, O. Gil-Medrano and A.M. Naveira, eds.), Lecture Notes in Math., vol. 1410, Springer-Verlag, Berlin, 262-271 (1989).
9. Nijenhuis, A. - Jacobi-type identities for bilinear differential concomitants of certain tensor fields I. Indagationes Math. 17, 390-403 (1955).
10. Nijenhuis, A. - On a class of common properties of some different types of algebras I, II. Niew Archief voor Wiskunde 17 (3), 17-46 (1969).
11. Nijenhuis A. and R. Richardson - Deformation of Lie algebra structures. J. Math. Mech. 17, 89-105 (1967).
12. Tulczyjew, W.M. - The graded Lie algebra of multivector fields and the generalized Lie derivative of forms. Bull. Acad. Polon. Sci. 22 (9), 937-942 (1974).
13. Schouten, J.A. - Über Differentialkonkomitanten zweier kontravarianter Größen. Indagationes Math. 2, 449-452 (1940).
14. Vinogradov, A.M. - Unification of Schouten-Nijenhuis and Frölicher-Nijenhuis brackets, cohomology and super-differential operators. Sov. Mat. Zametki 47 (1990).

[^0]: 1991 Mathematics Subject Classification. 58A 10.
 Key words and phrases. Frölicher-Nijenhuis bracket, symmetric Schouten bracket, Poisson bracket.

