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ABSTRACT 

There is a canonical mapping from the space of sections of the bundle AT*M@STM to 

R(T*M; T(T*M)). It is shown that this is a homomorphism on R(M; TM) for the Frolicher- 

Nijenhuis brackets, and also on r(STM) for the Schouten bracket of symmetric multivector fields. 

But the whole image is not a subalgebra for the Frolicher-Nijenhuis bracket on R(T*M; T(T’M)). 

1. INTRODUCTION 

It is well known that there are several extensions of the bracket of vector fields 

on a smooth manifold M. In particular, the Frolicher-Nijenhuis bracket extends 

the bracket of vector fields to all vector valued differential forms on M, i.e. to 

0(M; TM). Another classical extension is the Schouten bracket, this is an ex- 

tension of the bracket of vector fields to all symmetric multivector fields, i.e. to 

r( STM). The Schouten bracket has a natural interpretation in terms of Poisson 

bracket. Indeed, there is an obvious isomorphism K* of the algebra r(STM) on 

the algebra of smooth functions on T *A4 which are polynomial on the fiber. On 

the other hand there is a natural symplectic structure on T*M and the Schouten 

bracket corresponds just to the Poisson bracket under the above isomorphism. 

It is very natural, and it is the aim of this paper, to try to find a common gen- 

eralization of the two above brackets. 
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Let us give an example of problem where such an extension could be welcome. 

Suppose that A4 is equipped with a Riemannian metric g and let g denote the 

corresponding contravariant symmetric two-tensor field. Then, 7r* (g) is the Ha- 

miltonian of the geodesic flow on T *A4 and the symmetric tensor fields S satis- 

fying [g, S] = 0 correspond to functions on T’M which are invariant by the 

geodesic flow; such symmetric tensor fields are called Killing tensors. These 

Killing tensors form a Poisson subalgebra of r(STM). Now if S is a Killing 

tensor of order k; then it is not hard to show that only its covariant derivatives of 

order not greater than k are independent, i.e. its covariant derivatives of order 

greater than k are linear combination of those of order not greater than k with 

coefficients which are covariant expressions in the curvature tensor. This implies 

in particular that the equations [g, S] = 0 have a lot of integrability conditions 

and, since these integrability conditions are always consequence of d2 = 0, it is 

natural to introduce the algebra 0(M; STM) of symmetric multivector valued 

forms to analyse them. This algebra is a graded-commutative algebra for the 

graduation given by the form-degree and on this algebra there is a nice algebra of 

graded derivations associated with the metric. It is generated by three anti- 

derivations, V, S,, SL, where V is the exterior covariant differential corresponding 

to the Levi-Civita connection, 6, is the unique C”(M)-linear antiderivation 

such that 6, X E R’(A4) for X E I’(TM) is the one-form Y --f 6, X(Y) = 

g(X, Y) and 6,0’(M) = 0, 6; is the unique C”(M)-linear antiderivation such 

that 6; r(TM) = 0 and 6; w E r(TM) for w E 0’ (M) is the vector field ob- 

tained by the contraction of g with w. One has: 6; = 0, 6;’ = 0, 6,s; + 6; 6, 

equals the total degree in form and tensor, OS, + S,V = 0 (because V is torsion 

free) and the derivation D = VSL + 6iV is an extension to Q(M; STM) of the 

Schouten bracket with g. So it is natural to try to construct a bracket on 

Q(M; STM) extending the Schouten bracket for which D is the bracket with g. 

It is not difficult to construct such a bracket namely 

[a@ F,p@ G], = &(P)G- (-l)“bL;,,(~)F+~ A P@ [F,G] 

for cx E Q’(M), ,B E flb(A4), F, G E r(STM) with 

L&(w) = &@FVW + (-l)aVi,@FW 

for w E R(M) and where the generalised insertion i is defined by 

(the hat meaning omission of this element). 

More generally if V is any torsion free linear connection on M, the above 

formula defines a bracket [ , Iv which is an extension to G(M; STM) of both the 

Schouten bracket and the Frolicher-Nijenhuis bracket. Furthermore, this 

bracket is a graded derivation in each variable, it is also graded antisymmetric 

but unfortunately it does not satisfy the graded Jacobi identity. 

In this paper we shall follow another way: we first send fl(M; STM) in 
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Q( T *M) by using the isomorphism rr *, then we use a construction introduced by 

one of us [5] to send it in R(T*M; T(T*M)) m which there is the Frolicher- 

Nijenhuis bracket and we show that this gives an injective homomorphisms of 

graded Lie agebras for the Frolicher-Nijenhuis bracket on Q(M; TM) and the 

Schouten bracket on r(STM). But the common generalization of these two 

brackets does not exist on the space R(M; STM), only on R(T*M; T(T*M)). 

This is similar to the common generalization found by Vinogradov [14,1] of the 

Frolicher-Nijenhuis bracket and the skew symmetric Schouten bracket on 

r(ATM), which exist only on a quotient of a certain space of ‘superdifferential 

operators’ on Q(M). 

2. THE POISSON BRACKET FOR DIFFERENTIAL FORMS 

2.1. Frdicher-Nijenhuis bracket 

For the convenience of the reader we review here the theory of graded deri- 

vations of the graded commutative algebra of differential form on a smooth 

manifold M. See [2] and [3] for the original source, and 163 or [4], sections g-11, as 

a convenient reference, whose notation we follow here. 

The space Der(G(M)) of all graded derivations of the graded commutative 

algebra of differential forms on M is a graded Lie algebra with the graded com- 

mutator as bracket. In the following formulas we will always assume that K E 

Qnk(M; TM) = r(A’T*M c% TM), L E fln’(A4: TM), w E Qq(M). The formula 

for Xi E X(M) (or TX M) defines a graded derivation in E Derk _ 1 R(M) and any 

derivation D with D 1 n’(M) = 0 is of this form. On R*+‘(M, TM) (with the 

grading *) a graded Lie bracket is given by [K, L]* = in L - (- l)(k ~ ‘)(‘~ ‘)i~ K 

where iK($ @ X) := iK($) 8X, which satisfies i([K, L]“) := [in, iL]. It is called 

the Nijenhuis-Richardson bracket, see [ll]. 

The exterior derivative d is an element of Derl R(M). We define the Lie deri- 

vation CK = C(K) E Derk R(M) by LK := [in, d]. For any graded derivation 

D E Derk G(M) there are unique K E flnk(M; TM) and L E Q’+‘(M; TM) 

such that D = CK + iL. We have L = 0 if and only if [D, d] = 0, and D 1 no(M) = 

0 if and only if K = 0. Clearly [[~Z:K, CL],d] = 0, so we have [L(K), C(L)] = 

C([K, L]) for a uniquely defined [K, L] E fl’+‘(M; TM). This vector valued 

form [K, L] is called the Friilicher--Nijenhuis bracket of K and L. It is well be- 

haved with respect to the obvious relation of ,f-relatedness of tangent bundle 

valued differential forms, where f : A4 - N. For k = 1 = 0 it coincides with the 

Lie bracket of vector fields. Let the degree of w be q, of cp be k, and of $ be 1. Let 

the other degrees be as indicated. Then the following formulas hold 

(1) [CK: iL] = i([K, L]) - (-l)k’L(iL K). 

53 



(4 i(w A L) = w A i(L). 

(3) C(w A K) = w A CK - (-l)q+k-‘i(dW A K). 

(4) 
( 

[W A &,&I = w A [&,&] - (-1)(q+k’)kZC(K2)~ A K, 

+ (-1) q+kldw A i(Kl)K2. 

(5) 
[‘P~‘X,II,~~Y]=~~A~~[[X,Y]+~~AL~~,~--C~~~A~C,~~ 

+(-l)k(dp A ix?+b@ Y+iycp A &,/163X). 

2.2. Poisson manifolds 

Let (M, p) be a Poisson manifold, that is a smooth manifold M together with a 

2-field p E r(A2TM) satisfying [p, p] = 0, where [ , ] is the Schouten-Nijenhuis 

bracket on r(A* _ ‘TM), see [7] and [12]. Then p induces a skew symmetric dif- 

ferential concomitant on CCO(M, Iw) given by {f,g}, = p(df, dg). The Jacobi 

identity for this bracket is equivalent to [p, p] = 0, see [7], 1.4 for a nice proof. 

Here we view p as a skew symmetric bilinear form on T *M, but also as a vector 

bundle homomorphism p : T’M + TM. 
It is well known that for a symplectic manifold (M, w) with associated Poisson 

structure p = w-’ : T’M -+ TM we have the following exact sequence of Lie 

algebras: 

(1) 0 -+ Ho(M) + Cm(M) R) -rt, XJM) -2, H’(M) + 0. 

Here H*(M) is the real De Rham cohomology of M, the space C”(M, R) is 

equipped with the Poisson bracket { , }p, X,(M) consists of all vector fields E 

with fZ( w = 0 (the locally Hamiltonian vector fields), which is a Lie algebra for 

the Lie bracket. Also Hf is the Hamiltonian vector field for f E Cm(M, R) given 

by Hf = p(df ), and r(t) is the cohomology class of ic w. The spaces Ho(M) and 

H’(M) are equipped with the zero bracket. 

2.3. The graded Poisson bracket for differential forms 

In [5] the exact sequence 2.2(l) has been generalized in the following way. It 

was stated there for symplectic manifolds, but the proofs there work without any 

change also for Poisson manifolds. 

We consider first the space L?(M; TM) = r(A*T*M@ TM) of tangent 

bundle valued differential forms on M, equipped with the Frolicher-Nijenhuis 

bracket [ , 1. We first extend p : T*M + TM to a module valued graded deriva- 

tion of degree - 1 by 

(1) p : R(M) + L’(M; TM), 

P 1 fi”(W = 0, and for (Pi E n’(M) by 

p((~i A ... A qk) = 5 (-I)‘-‘cpl A . . . 6 ... A ‘Pk @ P(9). 
i= 1 
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Then we have the Hamiltonian mapping 

(4 H : O(M) -+ L’(M; TM), 

H(g) := P(d@), 

H(hdfl A .” A dji) = 5 (-l)‘dfo A . . . d> . . . A dfk@Hh. 
i=O 

Theorem. [5]. Let (M, p) b e a Poisson manifold. Then on the space o(M)/B(M) 

of dtjGerentia1 forms module exact forms there exists a unique graded Lie bracket 

{ , },, which isgiven by the quotient modulo B(M) of 

{cp, $1; = i(H,)d$, or 

{fb dfl A . . A dfk, go dgl A A da}:, 

(3) 

i ’ 
=~(-l)“‘{~,gj}~dfoA...~.--AdfkAdgoA...d~~..Adgk. 

such that H : R(M)/B(M) + Q(M; TM) is a homomorphism of graded Lie al- 

gebras. 

Lf p = w-’ for a symplectic structure w on M then we have a short exact sequence 

of vector spaces 

(4) 
0 + H*(M) -+ fl(M)/B(M) 3 Q13w=O(M; TM) 

-+ H*+‘(M)@r(E,) +O 

where r(E,) is a space of sections of a certain vector bundle and where the space 

0,,=o(M; TM) is the graded Lie subalgebra of all K E Q(M; TM) such that,for 

the Lie derivative along K we have ICK w = 0. We also have the exact sequence of 

graded Lie algebras 

(5) 0 + H*(M) --+ o(M)/B(M) -% &(M; TM) + H*+‘(M) + 0 

where now Q,(M; TM) is the graded Lie subalgebra of all K E Rk (M; TM) such 

thatfor the Liederivativealong K we have ,CKW = OandK + ((-l)k”/(k + 1))~ 

,o(iK w) = 0, and where on the De Rham cohomology spaces weput the brackets 0. 

See [5] for the proof of this theorem and for more information. The step from 

the sequence (4) to (5) was noticed in [8]. Parts of this theorem were reproved by 

a different method in [l]. We just note here that on Q(M) itself the bracket { , };, 

is graded anticommutative, but does not satisfy the graded Jacobi identity, 

whereas a second form, {cp, $}i = ,C H(~)$J,, satisfies the graded Jacobi identity 

but is not graded anticommutative, and they differ by something exact. 

3. THE FRijLICHER-NIJENHUIS BRACKET ON R(T*M; T(T*M)) 

3.1. Let M be a smooth manifold. We consider the cotangent bundle 7r : T *M ----t 
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M, the Liouvilleform 0~ E R’(T*M), given by @M(J) = (7rr*~ c, T(rr~) . ,OTM, 

and the canonical symplectic form WM = -dQM. 
The space r(STM) of symmetric contravariant tensor fields carries a natural 

differential concomitant which was found by Schouten [13] and which for 
Xi, 5 E E(M) and forf,g E Cm(M, R) is given by (see [7]) 

(1) If>81 = 0 

[& v .‘. v &, fi v ..’ v E] 

= C [Xi, q] V Xl V . . . z ..’ V Xk V 5 V . . . x . V yI, 
i,j 

[f, Y, V . . v I$] = C df( rj) . Y, v . . . F . . . v x. 

Obviously r(S*+’ TM) is a Lie algebra (with grading *, but not a graded Lie 
algebra). Any symmetric multivector field U E r(SkTM) may be viewed as a 
function on T ‘M which is homogeneous of degree k on each fiber. So we have a 
linear injective mapping 

7r* : T(SkTM) + P(T*M, R) 

(r*u(cp) = bk> %.44. 

It is well known that rr* is a homomorphism of Lie algebras, where on 
COO(T*M, R) we consider the canonical Poisson bracket { , } induced by p = 
w&‘. See also 3.5(2). 

3.2. We consider the pullback 7r* : fin(M) + G(T*M), and we extend it to the 
linear mapping 

n* : r(AkT*M @ S’TM) + flk(T*M), 

(1) (~*A)&,-,<k) = (‘p v ... v cP,A(T~.Sl,...,T~.lk)),, 

The space I’(AT*M 18 STM) = ek,[ r(AkT*M @ S/TM) is a graded com- 
mutative algebra with respect to the degree k, and 7r* : l$lT*M @ STM) + 
L?( T *M) is obviously a homomorphism with respect to the ‘wedge’ products. In 
the following we will always write 7r* in front of any tensor field on M which 
contains vector field components, but we will suppress it if we consider pullbacks 
of functions or differential forms to T ‘M. 

Lemma. (2) For each k 2 0 andfor 1> 0 the mapping 

h : l+lkT*M 8 S’TM) -% fi’(T*M) --f 
L”(T*M) 

Bk(T*M) 

is injective. 

5 flk(T*M; T(T*M)) 

(3) For I = 0 the mapping 
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R(M) 5 o(T*M) + 
qT*M) 
B(T*M) 

induces an injective linear mapping 

R(M) R(T*M) 

B(M)+ B(T*M) ’ 

(4) Let I E X(T*M) be the vertical homothetic vector field on T’M, given by 

I(p) = dldt 11 tq. Then for each 1 > 0 the image of the linear mapping 

T* : l+lkT*M @ S’TM) -+ J2’(T*M) 

is the subspace consisting of all horizontal dtJ%erential forms di E 0( T * M) which 

satisfy CI @ = I. @. 

Proof. Since rr : T * M + M is a homotopy equivalence with homotopy inverse 

the zero section, the pullback operator induces an injective linear mapping rr* : 

R(M)/B(M) + fi(T*M)/B(T*M). This proves (3). 

Now let 0 # A E r(AkT*M @ S’TM). We consider the vertical vector field 

I E X(T*M), Z(p) = wl((p, ‘p) = d/dt 11 rep. The flow of I is given by the vertical 

homotheties Fl:(cp) = e’cp, we have (Fl:)*r*A = e”r*A, and thus 

ildx*A + 0 = Ct 7r*A = $ lo(F1,!)*7r*A = $ 10 e”7r*A = lr*A 

which is not 0 for 1 > 0. Since p : fl>‘(T*M) ---) fl(T*M: T(T*M)) is injective, 

(2) follows. 

We also conclude the inclusion C in (4). Since the assertion is local on M, for 

the converse inclusion > we may use local coordinates on T * Q c T * M as in the 

beginning of the proof of Lemma 3.3. Then I 1 Q = C pi(a/apl) and any hori- 

zontalformisasumofexpressionlike@ =f(q,p)dq’l A ..t A dq’p E P(T*Q). 

Then Lt @ = 1. @ means Lr f = I. f from which we conclude that in multi-index 

notation we have f (q, P) Cl,, =, f*(q) P”, which implies the result, since we may 

use a partition of unity on M. 0 

3.3. Lemma. Collection of formulas. In the following X, Y E J(M) are vector 

fields, cp E P(M), $ E flq(M), K E fl’(M; TM), L E fl’(M; TM), and f E 

Q’(M). Then the following formulas hold on T*M. We drop 7r* in front ofpull- 

backs of dtf$erentialforms. 

(1) 
(2) 
(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

[hX, hY] = h[X, Y]. 

[PCP, ~$1 = 0, th us also [hp, ~$1 = [pd$, pep] = 0, etc. 

[hX, WI = 4x (P, so also [hX, hp] = [hX, pdp] = hCx cp. 

iPP II, = 0 and iPy plc, = 0, so also C,, $ = O? etc. 

C e,+ x*X = -ix cp, so also C& r*X = -ix dp. 

Chk f = CK f, so also ChK $57 = CK p. Similarly it& p = iK q. 

[hL,hf] = h&f. 

ChKX*L = n*[K, L] + (-l)(k-‘)‘d7r*(iLK). 

d&K n*L = (-l)kC/,Kdx*L = d-ir*[K, L]. 
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v-9 i@K $ = 0, $0 also fp’K $ = 0. 

(11) C @Kn*L = -(-l)(k-‘)‘r*iLK. 

(12) ihK n’L = n*iK L. 

(13) ihKd7r*L = n*[K,L] - (-l)kd7r*(iKL+ (-l)(k-l)(l-‘)iLK). 

(14) ihX P+ = -PiX +. 

(15) Ch+,r*L = -(-l)P’iLdp. 

(16) [pr*K, h+] = p(iK d$) - (-l)kihK h$. 

Proof. Let us fix local coordinates ql, . . . , 4”’ on an open subset Q of A4 and in- 

duced coordinates q”, pj on T *Q c T ‘M, so that the Liouville form 0 1 T*Q = 

C pi dq’ and the symplectic form is given by w = -dO = C dq’ A dpi. We have 

dpi AdPi) = & 

d 

w aPi H 
= -dqi &fd) = -$-, 

I 

so that forf E C”(A4, R), cp E P(M), and X E X(M) we get the following lo- 

cal formulas on T*Q c T*M: 

hf = ddf) = -C $ $, 
I 

b=p C ( dpi, i 
4 dqi A dqi’ A . . A dqip 
w > 

= C cpj, . ..j.,j(q)dqj’ A . . . A dq’ 8 $ 
J 

hX=-C gpi&+CX’$. 
m 

From this (1) and (2) follow by straightforward computation, whereas (3) follows 

from contemplating 2.1(l). 

(3) then can be proved as follows: 

PX, ~(fo dfi A . . . A d&J] 

=LhX 
( 

C (-l)i-‘fidf~ A ... A pdfi A ... A dfp 
i > 

=LhXfo.C (-l)‘-‘dfl A ... A hfi A “. A dfp 
i 

+ ,<F<i (-l)‘-‘fo.dfl A ’ . . A LhX dfj A . A hfi A 
_ 

+C (-l)‘-‘fo.dfl A ... A LhXhfi A ... A dfp 
i 
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where we also use the following special cases of (3), which are immediate from 

the local formulas: 

C/&yf= -cg 
( 

‘ px++cxi+ f =cx.f 
M 1 

ChX d.f = d&,x f = dCx f = Cx df 

= hCx f = pCx d.f. 

(5) is seen as follows: 

Wfodfl A ... A df&*J’ 

= i(p(fodfl A ... A dfp))dr*X+O 

C (-l)‘-‘fodf, A d? ... A dfp@hfl 
> 

dr*X 

(-l)‘--‘fodfl ,y . A ix df, A f A df, 

= -ix(fodfl A ...A dfp) 

where we use the special case 

i(hf)dn*X = i (-c $&)(E $$nrlq”‘+Z.X’dpx) 

= -Lxf = -ixdf 

For the proof of the remaining formulas we assume that K = p E X for +!I E 

Qk(A4) with dp = 0, and L = q!~ 8 Y for q!~ E L?‘(M) with d+ = 0, where X, Y E 

x(M). We may do this since locally L?(M; TM) is linearly generated by such 

elements. We will use the formulas of 2.1 without explicitly mentioning them. 

Under this assumptions we have 

h(p @ X) = pdr*(cp @ X) = -dr*X A pp + y A hX 

C(cp@X) = $0 A Lx. 

(6) follows from (4) via 

&&f = ihKdf = i(-dr*X A p’p + cp A hX)df 

= -dr’X A i,, df + cp A ihx df 

=O+p A ixdf =iKdf =CKf. 

Then we get in turn 

ihK(f0 df 1 A . . . A dfp) 

=C (-l)i-‘fodfl A A kdf, A ... A dfp@hfi 
i 

= k(fodfl A ... A df,), 
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LhKdf = (-l)kdC,,Kf = (-l)kdLKf = &df, 

LhK(fOdfi A ... A df,) 

=L/,KfO.df, A ..’ A dfp) 

+C (-l)i-lfOdfl A ... A LhKdfi A .‘. A dfp@hfi 

= LK(f0dfl A ... A dfp). 

(7) can be seen as follows, using (3), (2), and (5): 

[hL,hf] = [h($@ y),hf] = [$J A hy-dr*y A pll,hfl 

=$ A [hy,hf]-&,& A hY-0 

-dn*Y A [pQ,hf] +L/,fdr*Y A p$+o 

=1c, A hLrf -di~df A ,o$=hh($ A Lyf) =hLLf. 

(8) We start with the following computation, using (9, (5), and ihx $J = ix ?+/I. 

= ihKdTT*L - (-l)k-‘dihKT*L 

= i(-dn*X A pp + p A hX)((-l)‘$ A dr*Y) 

+ (-l)kdi(-dn”X A p’p + ‘p A hX)($ A n-* Y) 

= -(-l)‘dn*X A iPP$ A dT*Y- (-l)‘f(k-2)‘d~*X A II, A i,,dr*Y 

+(-1)‘~ A ihX?+b A dr*Y+q A + A ihxdT*y 

+ (-l)kd(-dr*X A iPv$ A n*Y +q A ihx’$ A n*Y) 

= 0 + (-1) (k-l)‘dr*X A 1c, A iyp + (-1)‘~ A ix$ A dn*Y 

+cpA$A?r*[X,Y]+O+pAdix11,Ar*Y-(-l)’pAix?I,Adr*Y 

= p A 11 A r*[X, Y] + p A dix $ A TT* Y - (-l)k+‘iy cp A II, A dn*X, 

where we also used 

Then we get 

7r* [K Ll 

=7r*[(pcaxx,1c)@ Y], use now 2.1(2) 

=~~A~A~*[X,Y]+~~AL~II,A~*Y-L~(PA\A~*X+O+~, 
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Ch,y 7r*L. - 7r*pc, L] 

= diycp A IJ A r*X - (-l)kf’iycp A IJ A dT*X 

= d((-l)(k-‘)‘$ A iycp A T*X) = (-l)(kp’)‘dx*(iLK). 

(9) follows from (8). 

(10) i(pr*K)$ = i(7r*X. pcp)$ = 7r’X. i,, $I = 0. 

(I 1) We compute in turn 

c ,+Kx*Y = i(x*X A ,mp)dr*Y = T*X A Cpv”rr* Y 

= -T*X A iy (F = -n-*iy K 

C pT*K7r*L=Cp,*&l*Y A $) =CpafK7r*Y A l+b+7r*Y A Cpn’Kq! 

= -r*(iyK) A $+O 

= -(-l)(k-‘)‘r*iLK, 

(12) We have in turn 

ihKTT*L = i(-dn*X A pp + ‘p A hX)($ A 7r’Y) 

= -dn*X A i,,$ A 7r*Y +C,C A ihX’$ A 7r’Y 

=0-l-cp A ix+ A T*Y=r*iKL. 

(13) From (8) we get 

ij,Kdn*L = &Kn*L+ (-l)kp’dihKT*L 

= n*[K, L] - (-l)kd7r*(iK L + (-1) (k-‘)(‘-I)iLK), 

(14) We just compute 

ihxdfoclf~ A ... A df,) 

= illx(C (-l)‘-‘fodfl A ... A hj; A ... A d,fq) 

= kTj (-l)k+ifOdf, A A ihXdjk A “. A hj; A ... A of, 

+kFj (-l)k+j-’ JbLIf’l A ... A hfi A .‘. A ihxdfk A ... A (If, 

= -pix(fodf, A ... A df,). 

(15) This is an easy consequence of (4) and (5), namely 

&,p7F*L=&v(l,!j A 7T*Y) =o+(-l)p’lc, A chpi*Y 

= -(-l)p’+ A iyp = -(-1) P/. d 
IL p. 

(16) This can be seen by summing the following evaluations: 
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= [p~*(cp@XX),W~l = [w.~*X,Wl 

= T*X A [pep, h$] - (-1) (k- l)qChll 7r*X A P’P+ (-l)k- l&*X A iPlp hlC, 

= p’p A ixd$, 

p(i~d$) = p(cp A ix d$,) = PP A ix& + (-lf‘v A @x44 

ihKh$ = i(--dn*X A p’p + cp A hX)(pd+) 

=-dr*X A i,,pd$+cp A ihXpd$=O-y A ihxpd+. 0 

3.4. The extended insertion 

For A E &(M; S’TM) we define now the insertion operator 

iA : R*(M; S”TA4) + fjP+k-$j,f.y++y+f) 

i(p @ xl v . . v &)($’ 8 v) 

= $7 A c ix, ‘$ @ X, v . . . g . . . v & v v. 

This is a graded derivation of degree k - 1 of the graded commutative algebra 

C3 tTl>O flm(A4, STM) which vanishes on the subalgebra r(STM). 

Lemma. More formulas. For A E Rk(M; S/TM), where E > 0, and I,!J E Qq(M) 
we have on T *A4 

(1) Lhllt7r*A = -(-l)qkrr*iA d$. 

(2) b~*A,Wl = P 7r*iA dy5 - (-l)kih~ h+. 

Proof. (1) We prove this by induction on 1. For I = 1 this is 3.3(15). For the in- 

duction we compute as follows: 

= C,,$,~*X A n*A + K’X A .&?j,r*A 

= -ixd+ A r*A - (-l)qk.ir*X A x*iAdlC, 

= -(-l)qk7r*(A A ixd$+ X A iAd$) = -(-1)qk7r*ixAA d$. 

(2) We use again induction on 1. For I = 1 this is 3.3(16). The left-hand side 

equals: 

[P~*(X A 4,&d 

= [n*X A p7r*A,h+] 

= 7r*X A [p”*A,h$j - (-l)(k-*)q&ll,~*X A p7r”A 

+ (-l)kd7r*X A &Ah+ 

= 7r*X A px*iA d4 - (-l)kx*X A r*ihA h+ 

+ (-1) (k-l)qiXd$ A pn*A + (-l)kd7r*X A ipTeA h+. 
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For the right-hand side we get: 

Pr*iXAA d$ - (-l)kih(XAA$$ 

=pn*(X A iAd$+A A ixd$) 

- (-l)‘i(hX A 7r”A - dn*X A pn*A + 7r’X A hA)h$ 

= 7r*X A pr*iA dll, + px*A A ixd$ - (-l)k.ir*A A pixdti 

- (-l)kx*A A ihxh$ + (-l)kdr*X A ip+A h$ 

- (-l)k7r*X A ihA h$. 

Using 3.3(14) we see that it equals the left-hand side. q 

3.5. Theorem. (1) The linear injective mapping 

h : r(AT*M @ TM) = Q(M; TM) -% R(T*M) 

5 Q(T*M; T(T*M)) 

is a homomorphism for the Friilicher-Nijenhuis brackets. 

(2) The linear mapping 

h : r(STM) 5 Q(T*M) 5 R(T*M; T(T*M)) 

is a homomorphism from the symmetric Schouten bracket to the Friilicher- 

Nijenhuis bracket. The kernel of h is Ho (AI). 

(3) For differentialforms cp, $ E R(M) we have 

[hp, h+l = 0. 

(4) For A E R(A4; STM) and $ E R(M) we have 

[hA, h$] = hiA d$, where 

(5) FordimM > 2, ingeneral [hflk1(A4;S~TM),hQk2(A4;S’2TA4)] doesnotlie 

in the image of h, if kl ,I, > 1 and 12 > 2 (or under the symmetric condition). 

Proof. (1) We have to show that [hK, hL] = h[K, L] for K E L”(M; TM) and 

L E fl’(A4; TM) and we do this by induction on k + I. The case of vector fields 

k + I = 0 is well known, see 3.3(l). Since the question is local on A4 and since 

Ok+’ (M. TM) is locally linearly generated by df A K for f E Q’(M) and K E 

fl’(M; T’M) it suffices to check that [hK, hL] = h[K, L] implies [h(df A K)? hL] = 

h[df A K, L]. We have 

h(df A K) = pd(df A r*K) = -dT’K A hf idf A hK. 

Using twice 2.1(4) we get then 
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[h(df A K),hL] = df A [hK,hL] - (-l)(‘+k)‘LLLdf A hK+O 

-dn*K A [hf,hL]+(-l)(‘+k)kChLdn*K A hf -0 

= df A h[K,L] - (-l)(l+k)‘CLdf A hK 

+dr*K A h&f + (-l)k’dn*[L,K] A hf, 

where we used in turn induction, 3.3(6), 3.3(7), and 3.3(8). On the other hand we 

have again by 2.1(4) 

h[df A K, L] = pdr*(df A [K, L] - (-l)(’ +k)‘LL df A K + 0) 

= -hf A dn*[K,L] + df A h[K,L] 

+ (-l)k’pL,df A dn*K+ (-l)k’+‘+lLLdf A hK, 

which equals the expression for [h(df A K), hE] from above. 

(2) This is well known, and easy to check starting from 3.3(l). 

(3) is 3.3(2). 

(4) First we prove a partial result. 

Claim. For K E L?‘(M; TM) and $J E fiq(M) we have [hK,h$] = hf2~ T./J = 

hiKd$. 

To check the claim we use induction on q = deg+. For q = 0 this is 3.3(7). 

Since the assertion is local on A4 it suffices to consider df A II, for the induction 

step. In the following computation we use 2.1(4), induction, 3.3(6), and 3.3(7): 

[hK, h(df A $J)] = [hK,df A h$ - d$ A hf] 

= (-l)kdf A [hK, h+] + ,&K df A h$ - 0 

- (-l)(q+‘)kd$ A [hK,hf] -/!&d$J A hf +0 

= (-l)kdf A h&$+h&df A h$ 

- (-l)(q+‘)kd$ A h&f - &dlC’ A hf. 

On the other hand we have by 2.1(3) 

hLK(df A $I) = h((-l)kd&f A ‘$‘+ (-l)kdf A CK$i) 

= ,o(dLKf A dll, - (-l)kdf A d&r+) 

= -h&y f A d$ + (-l)kd&f A hlC, 

- (-l)khf A dCK$+ (-l)kdf A hLK$‘, 

which equals the above expression. So the claim follows. 

Now we can extend this result to A E flk(A4; S’TM) by induction on 1. For 

I = 1 this is the claim above. For the induction we compute first the left-hand 

side, using 2.1(4), the claim, 3.4, induction, and 3.3(14): 
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= [hX A n*A - dr*X A pr*A + r*X A hA,h$] 

= 7r*A A [hX,h$] - (-l)% h+r*A A hX+ (-l)kd7r*A A ihx hti 

- dn*X A [pn*A,h$] + (-l)kqLCh,dr*X A pr*A - 0 

+ 7r*X A [hA, h$] - (-l)kqC hli,r*X A hA + (-l)kd~*X A ihA h$ 

= r*A A hix dlC, + n*iA d$ A hX - (-l)kdr*A A pix d$ 

- dr*X A piA d4 - (-l)‘kP ‘jqdiXdlC, A pr*A 

+ r*X A hiA d$ + (-l)kqiX d$ A hA. 

The right-hand side is 

hi(X A A)d$ 

= h(A A ixd$+X A iAd$) 

= p(dr*A A i,d$+(-l)kr*A A dixd$+dT*X A r*iAd$+x*X A dr*iAd$) 

:= hA A ixdlC,+ (-l)kdn*A A pixdlC,+ (-l)kpn*A A dixd$ 

+n*A A hixd$+hX A n*iAd$--dr*X A pr*iAd$+t*X A hr*iAd@), 

which equals the left-hand side. 

(5) By 3.2(3) the image of 7r* : L?(M;S’TM) is the space of all horizontal 

forms @ E L?( T *M) satisfying Ll@ = I. @. In local coordinates on A4 we con- 

sider then, using the bracket { , }’ described in 2.3, 

= {ia dhwd = hp,m)dd - {qhpddp, =pzdp,. 

dim 4b,d = -dp, A dpz. 

Thus { p, dq ’ , p1 p2}’ plus something exact can never be horizontal. 0 
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