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ABSTRACT

There is a canonical mapping from the space of sections of the bundle AT*M ® STM to
AT*M; T(T*M)). It is shown that this is a homomorphism on 2(M; T M) for the Frolicher-
Nijenhuis brackets, and also on I'(ST M) for the Schouten bracket of symmetric multivector fields.
But the whole image is not a subalgebra for the Frolicher-Nijenhuis bracket on 2(7*M; T(T*M)).

1. INTRODUCTION

It is well known that there are several extensions of the bracket of vector fields
on a smooth manifold M. In particular, the Frolicher—Nijenhuis bracket extends
the bracket of vector fields to all vector valued differential forms on M, i.e. to
2(M; TM). Another classical extension is the Schouten bracket, this is an ex-
tension of the bracket of vector fields to all symmetric multivector fields, i.e. to
I'(ST M). The Schouten bracket has a natural interpretation in terms of Poisson
bracket. Indeed, there is an obvious isomorphism 7* of the algebra I'(ST M) on
the algebra of smooth functions on 7*M which are polynomial on the fiber. On
the other hand there is a natural symplectic structure on 7*M and the Schouten
bracket corresponds just to the Poisson bracket under the above isomorphism.

It is very natural, and it is the aim of this paper, to try to find a common gen-
eralization of the two above brackets.
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Let us give an example of problem where such an extension could be welcome.
Suppose that M is equipped with a Riemannian metric g and let g denote the
corresponding contravariant symmetric two-tensor field. Then, 7*(g) is the Ha-
miltonian of the geodesic flow on T*M and the symmetric tensor fields S satis-
fying [g,S] = 0 correspond to functions on T*M which are invariant by the
geodesic flow; such symmetric tensor fields are called Killing tensors. These
Killing tensors form a Poisson subalgebra of I'(ST M ). Now if S is a Killing
tensor of order &; then it is not hard to show that only its covariant derivatives of
order not greater than k are independent, i.e. its covariant derivatives of order
greater than k are linear combination of those of order not greater than & with
coeflicients which are covariant expressions in the curvature tensor. This implies
in particular that the equations [g, S] = 0 have a lot of integrability conditions
and, since these integrability conditions are always consequence of d? = 0, it is
natural to introduce the algebra 2(M; ST M) of symmetric multivector valued
forms to analyse them. This algebra is a graded-commutative algebra for the
graduation given by the form-degree and on this algebra there is a nice algebra of
graded derivations associated with the metric. It is generated by three anti-
derivations, V, &, 6;, where V is the exterior covariant differential corresponding
to the Levi-—Civita connection, &, is the unique C* (A )-linear antiderivation
such that §, X € 2'(M) for X € [(TM) is the one-form ¥ — &, X(Y) =
g(X,Y)and 6, 2'(M) =0, 6, is the unique C*°(M)-linear antiderivation such
that 6; I'(TM) =0 and é;w € I'(TM) for w € 21(M) is the vector field ob-
tained by the contraction of g with w. One has: 62 =0, 6,> =0, 6,6, + 6,6,
equals the total degree in form and tensor, Vé, 4 6,V = 0 (because V is torsion
free) and the derivation D = Vé; + 6,V is an extension to £2(M; ST M) of the
Schouten bracket with g. So it is natural to try to construct a bracket on
2(M; ST M) extending the Schouten bracket for which D is the bracket with g.
It is not difficult to construct such a bracket namely

[@®F,8® Glg = LYy 1(8)G — (~1)*LY s(a)F + o A B [F,G]
for a € NU(M), 8 € 2°(M), F,G € I'(ST M) with

LZ@F(“’) =iagrVw+ (—1)"Viggrw

for w € 2(M) and where the generalised insertion 7 is defined by
k —~
l'a®le.‘.\/Xk(w) = Z a A iX,(w) RXNXV...X,---VX,
r=1

(the hat meaning omission of this element).

More generally if V is any torsion free linear connection on M, the above
formula defines a bracket [ , |, which is an extension to 2(M; ST M) of both the
Schouten bracket and the Froélicher—Nijenhuis bracket. Furthermore, this
bracket is a graded derivation in each variable, it is also graded antisymmetric
but unfortunately it does not satisfy the graded Jacobi identity.

In this paper we shall follow another way: we first send 2(M;STM) in
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§2(T*M ) by using the isomorphism 7*, then we use a construction introduced by
one of us [5] to send it in 2(T*M; T(T*M)) in which there is the Frolicher-
Nijenhuis bracket and we show that this gives an injective homomorphisms of
graded Lie agebras for the Frolicher—Nijenhuis bracket on £2(M; T M) and the
Schouten bracket on I'(ST M). But the common generalization of these two
brackets does not exist on the space 2(M; ST M), only on 2(T*M; T(T*M)).
This is similar to the common generalization found by Vinogradov [14,1] of the
Frolicher—Nijenhuis bracket and the skew symmetric Schouten bracket on
(AT M), which exist only on a quotient of a certain space of ‘superdifferential
operators’ on 2(M).

2. THE POISSON BRACKET FOR DIFFERENTIAL FORMS
2.1. Frolicher—Nijenhuis bracket

For the convenience of the reader we review here the theory of graded deri-
vations of the graded commutative algebra of differential form on a smooth
manifold M. See [2] and [3] for the original source, and [6] or [4], sections 811, as
a convenient reference, whose notation we follow here.

The space Der(£2{M)) of all graded derivations of the graded commutative
algebra of differential forms on M is a graded Lie algebra with the graded com-
mutator as bracket. In the following formulas we will always assume that K €
QKM TM)=T(AT*M®TM),Lc 2 (M;TM),w e 29(M). The formula

(in)(X17-~-7Xk+q~l)
1

= m_—l)' Z sign(a)w(K(Xgl, .. '7X(Tk)7Xa(k+l>a .. )

for X; € X(M) (or T, M) defines a graded derivation ix € Der;_ £2(M ) and any
derivation D with D ‘ 2°(M) = 0 is of this form. On 2" "'(M, T M) (with the
grading *) a graded Lie bracket is given by [K,L]" = ix L — (—1)("7')(17 Vi, K
where ix (v ® X) := ix(¢) ® X, which satisfies i([K, L]") = [ix, ). It is called
the Nijenhuis—Richardson bracket, see [11].

The exterior derivative d is an element of Der; £2(M). We define the Lie deri-
vation Lx = L(K) € Dery 2(M) by Lk := [ix,d]. For any graded derivation
D € Der; 2(M) there are unique K € 2*(M;TM) and L€ Q"Y' (M;TM)
such that D = Lg + i;. We have L = 0 ifand only if [D,d] = 0,and D | NM) =
0 if and only if K = 0. Clearly [[Lk,L.],d] =0, so we have [L(K),L(L)] =
L([K,L]) for a uniquely defined [K,L] € 2*/(M;TM). This vector valued
form (K, L] is called the Frolicher-Nijenhuis bracket of K and L. It is well be-
haved with respect to the obvious relation of f-relatedness of tangent bundle
valued differential forms, where f : M — N. For k = [ = 0 it coincides with the
Lie bracket of vector fields. Let the degree of w be g, of ¢ be k, and of ¢y be /. Let
the other degrees be as indicated. Then the following formulas hold

(1) (Lx.ir] = i([K,L]) — (-D¥L(3i, K).

53



(2) i(wAL)=wA iL).

(3) LwAK)=wA Lx— (=D ildw A K).

(4) [w A K17K2] =w A [K17K2] - (—"1)(q+kl)k2£(K2)w A K]
+ (=) dw A (K K.
(5) [p®X, YY) =p AYB[X, Y]+ ALx¥®Y —Lyp AP X
+ (1o A ixp® Y +iyp A dp® X).

2.2. Poisson manifolds

Let (M, p) be a Poisson manifold, that is a smooth manifold M together with a
2-field p € I'(A*T M) satisfying [p, p] = 0, where [, ] is the Schouten—Nijenhuis
bracket on I'(A*~ 'TM ), see [7] and [12]. Then p induces a skew symmetric dif-
ferential concomitant on C*(M,R) given by {f,g}, = p(df,dg). The Jacobi
identity for this bracket is equivalent to [p, p] = 0, see [7], 1.4 for a nice proof.
Here we view p as a skew symmetric bilinear form on T*M, but also as a vector
bundle homomorphism p: T*M — T M.

It is well known that for a symplectic manifold (M, w) with associated Poisson
structure p=w™!: T*M — TM we have the following exact sequence of Lie
algebras:

(1) 00— H(M) > C°(M,R) 2L %,(M) L H'(M) - 0.

Here H*(M) is the real De Rham cohomology of M, the space C*(M,R) is
equipped with the Poisson bracket {, },, X, (M) consists of all vector fields ¢
with £¢w = 0 (the locally Hamiltonian vector fields), which is a Lie algebra for
the Lie bracket. Also Hy is the Hamiltonian vector field for f € C®°(M, R) given
by Hy = p(df’), and ~(€) is the cohomology class of i¢ w. The spaces H°(M) and
H'(M) are equipped with the zero bracket.

2.3. The graded Poisson bracket for differential forms

In [5] the exact sequence 2.2(1) has been generalized in the following way. It
was stated there for symplectic manifolds, but the proofs there work without any
change also for Poisson manifolds.

We consider first the space 2(M;TM)=I1(A"T*M @ TM) of tangent
bundle valued differential forms on M, equipped with the Frélicher—Nijenhuis
bracket [, |. We first extend p : T*M — T M to a module valued graded deriva-
tion of degree —1 by

1) p:AM) — 2M;TM),
p|R°(M) =0, and for ¢; € 2'(M) by

plor A A )= (1) Tt AL G A e ® plen).

i=1
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Then we have the Hamiltonian mapping
(2) H:Q2(M)— QM;TM),
H(y) == p(dy),

k . o~
H(fsdfi A Adfi) =3 (=Vdfy A ... df; - A dfi ® Hj,.

i=0

Theorem. [5]. Let (M, p) be a Poisson manifold. Then on the space Q(M)/B(M)
of differential forms modulo exact forms there exists a unique graded Lie bracket
{ . },, which is given by the quotient modulo B(M ) of

{», w},l, =i(Hy)dy, or

{fodfi A --- Ndfe,godgi A -+ A dgl}l
) =S CO I fgd,dfo A dfy A dfi Adgo A dg A dg.

i
such that H : {X(M)/B(M) — $2(M; T M) is a homomorphism of graded Lie al-
gebras.
If p = w™! for a symplectic structure w on M then we have a short exact sequence
of vector spaces

@ {o — H* (M) — Q(M)/B(M) 5 0p,_o(M;T M)
— H "' M) T'(E)—0

where I'(E,) is a space of sections of a certain vector bundle and where the space
Rp,—o(M; T M) is the graded Lie subalgebra of all K € (X(M; T M) such that for
the Lie derivative along K we have Lx w = 0. We also have the exact sequence of
graded Lie algebras

(5) 0 — H (M)~ 2(M)/B(M) 5 Q,(M;TM) — H**'(M) - 0

where now 2,(M; T M) is the graded Lie subalgebra of all K € Q2%(M; T M) such
that for the Lie derivative along K we have Lx w = 0 and K + ((=1)* T/ (k + 1)) x
plig w) = 0, and where on the De Rham cohomology spaces we put the brackets 0.

See [5] for the proof of this theorem and for more information. The step from
the sequence (4) to (5) was noticed in [8]. Parts of this theorem were reproved by
a different method in [1]. We just note here that on 2(M ) itself the bracket { , }/',
is graded anticommutative, but does not satisfy the graded Jacobi identity,
whereas a second form, {y, w}f) = Ly(,)¥, satisfies the graded Jacobi identity
but is not graded anticommutative, and they differ by something exact.

3. THE FROLICHER-NIJENHUIS BRACKET ON (T*M;T(T*M))

3.1. Let M be a smooth manifold. We consider the cotangent bundle 7 : T*M —

55



M, the Liouville form 6, € 21(T*M), given by O (€) = (mrar & T(mar) - €) 7 p15
and the canonical symplectic form wy, = —dBGy.

The space I'(ST M) of symmetric contravariant tensor fields carries a natural
differential concomitant which was found by Schouten [13] and which for
X;,Y; € X(M) and for f, g € C*(M,R) is given by (see [7])

(1) [/,g] =0
[X]V---VXk,Y]V'-'V Y]]
=S X Yvhv.. X, VGVHhv.. Y VY,

[ )

BV VY =Xdf(Y). hv..Y VY.

J

Obviously I'(S**1T M) is a Lie algebra (with grading *, but not a graded Lie
algebra). Any symmetric multivector field U € I'(S¥T M) may be viewed as a
function on T*M which is homogeneous of degree k& on each fiber. So we have a
linear injective mapping

7 D(SKTM) — C®(T*M,R)

(m*U)(p) = (", Udgas-

It is well known that 7* is a homomorphism of Lie algebras, where on
C>®(T*M,R) we consider the canonical Poisson bracket { , } induced by p =
wyt - See also 3.5(2).

3.2. We consider the pullback 7* : 2(M) — 2(T*M), and we extend it to the
linear mapping
DA T*M ® S'TM) — QX(T*M),

(l) (W*A)(p(fl,. .. ,€k) = <(p VeV SD,A(T”T-SH- . ‘7T7T'§k)>TM‘

The space I'(AT*M @ STM) =@, , I(A*T*M ® S'TM) is a graded com-
mutative algebra with respect to the degree &, and n* : NAT*M ® STM) —
2(T*M) is obviously a homomorphism with respect to the ‘wedge’ products. In
the following we will always write 7* in front of any tensor field on M which

contains vector field components, but we will suppress it if we consider pullbacks
of functions or differential forms to 7* M.

Lemma. (2) Foreach k > 0 and for | > 0 the mapping

K(T*M)
BX(T*M)

H ok M, (T M)

h:T(AT*M @ S'TM) 2> 0X(T*M) —

is injective.
(3) For ! =0 the mapping
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2(T*M)
B(T*M)
induces an injective linear mapping

(M) XT*M)

B(M) B(T*M)’

QM) = AT M) —

(4) Ler I € X(T*M) be the vertical homothetic vector field on T*M, given by
I(p) =8/0t |1 to. Then for each | > 0 the image of the linear mapping

T DA T*M ® S'TM) — Q%(T*M)

is the subspace consisting of all horizontal differential forms & € (2(T*M ) which
satisfy L@ =1.9.

Proof. Since 7: T*M — M is a homotopy equivalence with homotopy inverse
the zero section, the pullback operator induces an injective linear mapping =* :
2(M)/B(M) — (T*M)/B(T*M). This proves (3).

Now let 0 # 4 € I'(A*T*M ® S'TM). We consider the vertical vector field
TeX(T*M), I{(p) = vl(p,¢) = 0/0t [1 ty. The flow of I is given by the vertical
homotheties F1/ () = e'y, we have (F1/)*7*4 = ¢/'7* 4, and thus

irdn*A+0=L;7*A4 z% ‘O(Fl,l)*‘/r*A :% ’0 el'n A =1Ir*A
which is not 0 for / > 0. Since p : 2°°(T*M) — 2(T*M; T(T*M)) is injective,
(2) follows.

We also conclude the inclusion C in (4). Since the assertion is local on M, for
the converse inclusion D we may use local coordinates on 7*Q C T*M as in the
beginning of the proof of Lemma 3.3. Then / | Q =}~ pi(8/9p;) and any hori-
zontal form is a sum of expression like @ = f (g, p)dq" A --- A dq'» € Q7 (T*Q).
Then L;® =1.® means L; f = [. f from which we conclude that in multi-index
notation we have f(g, p) 3, =; fa(q) p®, which implies the result, since we may
use a partition of unityon M. O

3.3. Lemma. Collection of formulas. In the following X, Y € X(M) are vector
fields, o € QP(M), e IM), K € QXM;TM), Le Q'(M;TM), and f €
QO(M). Then the following formulas hold on T*M. We drop n* in front of pull-
backs of differential forms.

(D) [hX,hY]=h[X,Y].

() lpp, p¥] = 0, thus also [hp, py] = [pdy, py] = 0, etc.

(3) [hX, ppl = pLx @, so also [hX , hp] = [hX, pdp] = hLx ¢.

@) i =0andi,, pyp=0,s0also L, =0, etc.

(5) Lopm' X = —ixp,s0also Lp,m* X = —ixdep.

6) Lox [ = Lxf,s0also Lyx o = Lk . Similarly iygx o = ig ¢.

(7) [hL,hf] = hLy f.

(8) Lix w*L = 77K, L] + (—1)* " Vaz=(i, K).

9) dlpx "L = (=) Lpx dr*L = dn*[K, L.
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(10) ipwx 0 =0,50also Lgp = 0.

(1) Lppegn*L = —(— 1)“‘ Dy K.

(12) ipgn*L =7m"ig L.

(13) ipg dn*L = n*[K, L] — (—1)*dr*(ix L+ (-1)% Y=V, k).
(14) inx ptp = —pix .

(15) Ly, m*L = —(=1)"ip do.

(16) [pr*K, k] = plix dv) — (=1 ing hp.

Proof. Let us fix local coordinates ¢', .. .,¢™ on an open subset Q of M and in-
duced coordinates g, p; on T*Q C T*M, so that the Liouville form 6 | T*Q =
>~ pidq’ and the symplectic form is givenby w = —dO = 5_ dgq’ A dp; We have

Is] 0
w(g;)—dpi pdpi) = Bq

0 i n_ 0
o5 ) ==da' o) =5

so that for f € C*(M,R), p € 2(M), and X € X(M) we get the following lo-
cal formulason 7*Q C T*M:

W= 0ldf) = -5 5

Ov; .. .
h<p:p<§j %llpd Adg" A - /\dq’P>

- ; 15]
= Girinilq Ydg A -+ A dg’ ®T
Pj

) G , 0
"X g P, T g

From this (1) and (2) follow by straightforward computation, whereas (3) follows
from contemplating 2.1(1).
(3) then can be proved as follows:

WX, p(fodfi A - A dfy)]
:ﬁhx(z (—1)i—1ﬁ)df1 A A pdfi Ao A dfp)

13

=Luxfo. X (' fL A ABFIA - A dS,

i

+ X (0T dfi A A Luxdfy Ao ARfi A - Adf,

1<j<i
+Z(_1)t—lfbdf1 Ao A ['hthi A A dfp
+ X (DT dfi A AR A - A Laxdf; A -2 A dS,
1<i<j

=p(Lx(fodfi A ... A dfy)),
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where we also use the following special cases of (3), which are immediate from
the local formulas:

an
Lyx [ = (—Z g™ +Z )f Lxf
Ethf:d[,,,Xf:dLszﬁxdf
axk 9 .0 af o
s = [~ G g Y EX 5 E
=hLx f = pLlydf.

(5) is seen as follows:

L(p(fodfi A - Ndfp))m™ X
=i(p(fodfi A -+ Ndfp))dr™X +0

= i(Z 0 'odfi AL df o A df,,®hf,>d7r*X

I

= =2 (=07 hdfi A Adxdfi A A df,
= —ix{fodfi A ~"/\dfp)

where we use the special case
i yarx =i 5 2 0 (5 0 g+ 5 i)
dq/ Op;
= ——EXf = —lxdf.

For the proof of the remaining formulas we assume that K = ¢ ® X for p €
2%(M) withdp = 0,and L = ¢ ® Y for ¢ € 2'(M) withdy = 0, where X, Y €
X(M). We may do this since locally 2(M; T M) is linearly generated by such
elements. We will use the formulas of 2.1 without explicitly mentioning them.
Under this assumptions we have

ho@X)=pdn*(p®X)=—drn*X A pp+p A hX
Lle®X)=p A Lx.
(6) follows from (4) via

Lok f =i df =i(—dm"X N pp+p A hX)df
= —dr*X AN ippdf +o Nipxdf
=04+¢ ANixdf =ixdf =Lk [

Then we get in turn

ink(fodfi A -+ A dfy)
=3 (=1)""fodfi A Ak dfi Ao A dfy ® S

= ik(fodfi A -+ Ndfp),
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Lixdf = (=)l f = (-V)dLx f = Lx df,

Lok (fodfi A -+ A dfy)
:AchKfO‘dfl FANERE /\dfp)

+X (1) "fodfi A ... A Ligdfi A - A df, @ hf
=£Kt(fodf1 Ao Ndfp).
(7) can be seen as follows, using (3), (2), and (5):
(AL, hf]=h(¥ @ Y),hf] = [ A hY —dr"Y A p3, hf]
=y A [RY,hf] = Lagp A BY =0

—dr*'Y A [p,hf ]+ Lypdn*Y A pp+0
=V AhLyf—diydf Npp=h(y AN Lyf)=hLL]f.

(8) We start with the following computation, using (4), (5), and iyx ¥ = iy ¢.

Lk ©*L

=i dr*L— (=1 dipg n*L

= i(—dm*X A po+¢ AhX)((=D)'y A dr*Y)
+ (=Ddi(—dm*X A pp+ o AhX) (@ A T°Y)

= —(~1)dr* X Adpyp A dr*Y — (=1) T E D x Ay A by, drtY
+(=Do Aipyp AdT*Y + 0 A Y A ipydrtY
+ (=D d(=dT* X N i) AT Y + 0 A dhyp A TY)

=0+ (=) VYarx Ay ANiyo+(—1)'o Aix Adr*Y
+OAYATX,Y]+04+0 Adixp AT*Y — (D))o Nix Adr*Y

=AY AT X, Y]+ Adix A W*Y—(—l)k+1iy<p AN Adr*X,

where we also used

Lyxm*Y
Zihxdﬂ'*Y
. ox’ 7] ; 0 oYk " k
(8 G g S ) (5 g e+

 OY*  0X*k
= Xl*—.—Yl——.— = *X Y
E( g 8q‘>pk X Y]
Then we get
K, L]

=1 p®@ X, ® Y], use now 2.1(2)
=p AYATX, Y|+ ALy Y AT Y —Lyp Aty AT X +0+0,
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Lygn*L —7"[K, L]
=divo Ny AT X — (- l)kHt pANY ANdr*X
=d((-D* "V Ay A nX) = (=D% Ddr (i, K).

(9) follows from (8).
(10) i(pr*K)y =i(m*X .pp) =n*X i, = 0.
(11) We compute in turn
Lowgn™Y =i(n"X A pp)dn™Y =X AN Ly, 7*Y
=-7m*X Niyg=-7"iy K
Lok L="Lprg(m*'Y NY)=Lprx ™Y NP +7"Y N Lyt
=—7"(iyK) AY+0
= (=) Vi k.
(12) We have in turn
8Xi 7]
ip W*LZi(— —+ X!
g 2 Bgn dq™ " Opm 2

Iix’lp/\ﬁ Y=n"iy L,

o ) AT

g L=i(—dr*X AN pp+ ¢ AN BX) A T"Y)
=—dn" X Nip, p AT Y+ Aipxy A T"Y
=049 Aixyp A 7Y =n*ig L.

(13) From (8) we get
g drn*L = Lpgn* L+ (—1)}(7 ldihKﬂ*L
=71 [K,L] — (=) dr*(ix L+ (- D* =D K.
(14) We just compute

iny p(fodfi A -+ A dfy)
=i (S (DT o df i A A REA - A dSy)

= Y (=DRdfi A A ixdfe Ao A RE A -2 A dS,

k<j

+ 5 (=0T A AR A - N g dfe Ao A d,
k>j

= —pix(fodfi A - Ndfy).
(15) This is an easy consequence of (4) and (5), namely
Lipm* L= Lpp(p A 7*Y) =0+ (=) A L, i"Y
—(=D)y Aive = —(=1)"irdy.

(16) This can be seen by summing the following evaluations:
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[om* K, hip)]
= [pm (¢ ® X),hy] = [pp. 7" X, hy)]
=X A [pp, hy) - (1) " Dig hp T X A pp+ (-1 D ldntx A ipp h1
=pp A ixdy,

plix dy) = plyp A ixdy) = pp A ixdy+ (=10 A piy dy,

ik hp = i(—dn*X A po+ o A hX)(pdy)
=—dn*X A gy pdip+ ¢ A ipx pdp =0 — @ A ipx pdip. O

3.4. The extended insertion

For A € 2 (M; S'T M) we define now the insertion operator
iA : _QP(M;S’"TM) — Qp+k_1(M;Sm+1~1TM)

{e®@XLV -V X)W ® V)
=AY i ¥®X V... X; VX V V.
7

This is a graded derivation of degree k — 1 of the graded commutative algebra
Dm0 27 (M, ST M) which vanishes on the subalgebra I'(ST M ).

Lemma. More formulas. For 4 € .Qk(M; S'TM), where | > 0, and 1 € 29(M)
we have on T*M

(1) Lppm*d=—(—1 )qk7r*l,4 di.

(2) [pr* A ) = prtigdy — (— ) ing hp.

Proof. (1) We prove this by induction on /. For / = 1 this is 3.3(15). For the in-
duction we compute as follows:
Ly (X N A)
=Ly X AT A+7"X N Lpyn*A
= —iydy A A — (~D)%x* X A 7¥igdy
= (=D (A A ixdp+ X Aigdy) = —(=1)™n%ixn s dip.
(2) We use again induction on /. For / = 1 this is 3.3(16). The left-hand side
equals:
[om*(X A A), h)]
=[7"X A pr*A4, hy)
=X A [pr*d, b — (-1)* VL, n X A prta
+ (=DFdr X A iy g i)
=7*'X A prtigdy— (— )k X A wripg by
+ (=) DGy dop A pr A + (= 1)Fdn* X A ipyes hip.
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For the right-hand side we get:
pm iy padyp — (—l)kih(X/\A)hw
:p’ﬂ'*(X ANigdy+ AN lxdﬂ))
—(=Dri(hX A m* A —dr*X A pr*A+ 71X A hA)hep
=1*X A prrigdiy+ pn*A A ixdy — (—1)*n*4 A pix dy
— (=7 A A iy hp+ (D)7 X A e g b
— (=D 7 X A ipg .
Using 3.3(14) we see that it equals the left-hand side. [

3.5. Theorem. (1) The linear injective mapping

h:T(AT*M ® TM) = Q(M; TM) " Q(T*M)
A (r M T(T*M))

is a homomorphism for the Frilicher—Nijenhuis brackets.
(2) The linear mapping

b D(STM) = T*M) 25 (T M, T(T*M))

is a homomorphism from the symmetric Schouten bracket to the Frolicher—
Nijenhuis bracket. The kernel of his H°(M).
(3) For differential forms @, € 2(M) we have

[hip, Ay = 0.
(4) For A € Q(M;STM) and iy € (M) we have
[hA, h)) = higdip, where

i((p@Xl\/ VXk)’(Z)::gO/\ <ZIXI¢®X] \/3.(; \/Xk>.
J

(5) For dim M > 2, in general [h!?k1 (M;Sh TM),h.QkZ(M; S2T M)| does not lie
in the image of h, if k1,1y > 1 and I, > 2 (or under the symmetric condition).

Proof. (1) We have to show that [hK, kL] = h[K, L] for K € 2¥(M;TM) and
L € 2'(M; T M) and we do this by induction on k + /. The case of vector fields
k 4+ 1 =0 is well known, see 3.3(1). Since the question is local on M and since
Q%+ (M; T M) is locally linearly generated by df A K for f € 2°(M)and K €
02%(M; T M) it suffices to check that [hK, kL] = h[K, L] implies [A(df A K),hL]=
hldf A K, L]. We have

hdf N K)=pd(df N m'K)=—dn*K N hf +df N hK.

Using twice 2.1(4) we get then

63



[h(df A K),hL) =df A [hK,hL] — (=1)*® 2, df A hK +0
—dm* K A [hf,RL + (1) 0L dr*K A B —0
=df AWK, L — (-D)"RL df A kK
+dn* K A RLLf + (=1)dn*[L, K] A hf,

where we used in turn induction, 3.3(6), 3.3(7), and 3.3(8). On the other hand we
have again by 2.1(4)

Rdf A K, L) = pdr*(df A [K,L] - (=1)"P 2 df A K+0)
=—hf Ndn*[K,L)+df N h[K,L]
+ (=D¥pLrdf ndr K+ (=D"THcodf A KK,

which equals the expression for [A(df A K),hL] from above.
(2) This is well known, and easy to check starting from 3.3(1).
(3) is 3.3(2).
(4) First we prove a partial result.

Claim. For K € Q¥(M;TM) and ¢ € 29(M) we have [hK, hy] = hLlgp =
hig di.

To check the claim we use induction on ¢ = deg. For ¢ = 0 this is 3.3(7).
Since the assertion is local on M it suffices to consider df A 1 for the induction
step. In the following computation we use 2.1(4), induction, 3.3(6), and 3.3(7):

[hK, h(df A ¢)] = [hK,df A by —dip A hf]
= (=1)*df A [hK hy)] + Lox df A hp—0
—(=D)9V%gy A [hK, hf) = Lok dd A hf +0
= (=1)*df A hLxp+hLx df A hy
— (=D Gy A Lk f — Lxdy A RS,

On the other hand we have by 2.1(3)

hLk(df N ) = h(~1)dLxf A $+ (=1)'df A Lx)
=p(dLx f A dy— (=D)df A dLx )
= —hLx [ A dy+ (=D dLif A b
— (=D*nf A dLgyp+ (-1)df A hLgy,
which equals the above expression. So the claim follows.
Now we can extend this result to 4 € 2%(M;S'T M) by induction on /. For

I =1 this 1s the claim above. For the induction we compute first the left-hand
side, using 2.1(4), the claim, 3.4, induction, and 3.3(14):
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[h(X . A), hi)]
=[hX A4 —dn*X A pr*A+7"X A hA, hy)
=7 A N RX by — (D)L A A RX 4+ (1) AT A A ipy ho
—dr* X A [pr A k) + (—D)M Ly dn* X A prtd -0
+ 71X A [RA b — (—DY Ly X A hA+ (=D dn* X A iyg bt
=14 A hixydy+ntigdy A hX — (=D)¥dn 4 A piydy
—dr*X A pigdy— (1)  Vdiydy A pr*A
+ 71X A higdy+ (=) iy dy A hA.
The right-hand side is
hi(X A Aydy
=h(A Nixdyp+ X A igdy)
= p(dm*4 A iy d’(/)-}-(—l)kﬂ*A ANdixdp+drn* X A rrigd+ 7" X ANdrigdi)
=hA A ixdp+ (—1)*dn*4 A piydy + (-1 Fpr 4 A diy dy
+ 7 AN hixdp+hX A atigdy—dn*X AN prrigdiy+ 7' X A hrtigdy),
which equals the left-hand side.
(5) By 3.2(3) the image of n* : 2(M;S'T M) is the space of all horizontal

forms ¢ € 2(T*M) satisfying £; & = /.&. In local coordinates on M we con-
sider then, using the bracket { , }' described in 2.3,

{ﬂ*<d le 9 ) (0 9 1
q dq' )’ dq' 842
= {pidq',pip2} = {p1,pip2}dqg' —{q",p1p2}dpy = prdp,

d{pidg', pip:}' = —dp\ A dp,.

Thus { p1 dq*, pr pz}1 plus something exact can never be horizontal. O
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