Given a unital associatve graded algebra we construct the graded
q-differential algebra by means of a graded q-commutator, where q is a
primitive N-th root of unity. The N-th power (N>1) of the differential of this
graded q-differential algebra is equal to zero. We use our approach to
construct the graded q-differential algebra in the case of a reduced quantum
plane which can be endowed with a structure of a graded algebra. We consider
the differential d satisfying d to power N equals zero as an analog of an
exterior differential and study the first order differential calculus induced
by this differential.Comment: 6 pages, submitted to the Proceedings of the "International
Conference on High Energy and Mathematical Physics", Morocco, Marrakech,
April 200