16,329 research outputs found
On Curvature in Noncommutative Geometry
A general definition of a bimodule connection in noncommutative geometry has
been recently proposed. For a given algebra this definition is compared with
the ordinary definition of a connection on a left module over the associated
enveloping algebra. The corresponding curvatures are also compared.Comment: 16 pages, PlainTe
Noncommutative generalization of SU(n)-principal fiber bundles: a review
This is an extended version of a communication made at the international
conference ``Noncommutative Geometry and Physics'' held at Orsay in april 2007.
In this proceeding, we make a review of some noncommutative constructions
connected to the ordinary fiber bundle theory. The noncommutative algebra is
the endomorphism algebra of a SU(n)-vector bundle, and its differential
calculus is based on its Lie algebra of derivations. It is shown that this
noncommutative geometry contains some of the most important constructions
introduced and used in the theory of connections on vector bundles, in
particular, what is needed to introduce gauge models in physics, and it also
contains naturally the essential aspects of the Higgs fields and its associated
mechanics of mass generation. It permits one also to extend some previous
constructions, as for instance symmetric reduction of (here noncommutative)
connections. From a mathematical point of view, these geometrico-algebraic
considerations highlight some new point on view, in particular we introduce a
new construction of the Chern characteristic classes
Possibilistic Boolean games: strategic reasoning under incomplete information
Boolean games offer a compact alternative to normal-form games, by encoding the goal of each agent as a propositional formula. In this paper, we show how this framework can be naturally extended to model situations in which agents are uncertain about other agents' goals. We first use uncertainty measures from possibility theory to semantically define (solution concepts to) Boolean games with incomplete information. Then we present a syntactic characterization of these semantics, which can readily be implemented, and we characterize the computational complexity
No-err typing aids
Device for aligning paper in typewriter to correct one letter or line of type is discussed. Two types of correcting devices are described and illustrations of the devices are provided
Guide for a typewriter
The invention relates to accessories for typewriters, and more particularly to an improved guide for use in aligning a sheet of paper preparatory to an application of typed indicia to selected spaces. The device includes an aligning plate pivotally mounted on a line guide having formed therein a plurality of aligned apertures. The plate is so positioned that an aperture is positioned immediately above a target area for a type slug so that a slug will imprint a character in selected spaces
Envelope-driven recollisions triggered by an elliptically polarized laser pulse
Increasing ellipticity usually suppresses the recollision probability
drastically. In contrast, we report on a recollision channel with large return
energy and a substantial probability, regardless of the ellipticity. The laser
envelope plays a dominant role in the energy gained by the electron, and in the
conditions under which the electron comes back to the core. We show that this
recollision channel eciently triggers multiple ionization with an elliptically
polarized pulse
On Byzantine Broadcast in Loosely Connected Networks
We consider the problem of reliably broadcasting information in a multihop
asynchronous network that is subject to Byzantine failures. Most existing
approaches give conditions for perfect reliable broadcast (all correct nodes
deliver the authentic message and nothing else), but they require a highly
connected network. An approach giving only probabilistic guarantees (correct
nodes deliver the authentic message with high probability) was recently
proposed for loosely connected networks, such as grids and tori. Yet, the
proposed solution requires a specific initialization (that includes global
knowledge) of each node, which may be difficult or impossible to guarantee in
self-organizing networks - for instance, a wireless sensor network, especially
if they are prone to Byzantine failures. In this paper, we propose a new
protocol offering guarantees for loosely connected networks that does not
require such global knowledge dependent initialization. In more details, we
give a methodology to determine whether a set of nodes will always deliver the
authentic message, in any execution. Then, we give conditions for perfect
reliable broadcast in a torus network. Finally, we provide experimental
evaluation for our solution, and determine the number of randomly distributed
Byzantine failures than can be tolerated, for a given correct broadcast
probability.Comment: 1
A Scalable Byzantine Grid
Modern networks assemble an ever growing number of nodes. However, it remains
difficult to increase the number of channels per node, thus the maximal degree
of the network may be bounded. This is typically the case in grid topology
networks, where each node has at most four neighbors. In this paper, we address
the following issue: if each node is likely to fail in an unpredictable manner,
how can we preserve some global reliability guarantees when the number of nodes
keeps increasing unboundedly ? To be more specific, we consider the problem or
reliably broadcasting information on an asynchronous grid in the presence of
Byzantine failures -- that is, some nodes may have an arbitrary and potentially
malicious behavior. Our requirement is that a constant fraction of correct
nodes remain able to achieve reliable communication. Existing solutions can
only tolerate a fixed number of Byzantine failures if they adopt a worst-case
placement scheme. Besides, if we assume a constant Byzantine ratio (each node
has the same probability to be Byzantine), the probability to have a fatal
placement approaches 1 when the number of nodes increases, and reliability
guarantees collapse. In this paper, we propose the first broadcast protocol
that overcomes these difficulties. First, the number of Byzantine failures that
can be tolerated (if they adopt the worst-case placement) now increases with
the number of nodes. Second, we are able to tolerate a constant Byzantine
ratio, however large the grid may be. In other words, the grid becomes
scalable. This result has important security applications in ultra-large
networks, where each node has a given probability to misbehave.Comment: 17 page
- …