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Abstract. Boolean games offer a compact alternative to normal-form games, by
encoding the goal of each agent as a propositional formula. In this paper, we
show how this framework can be naturally extended to model situations in which
agents are uncertain about other agents’ goals. We first use uncertainty measures
from possibility theory to semantically define (solution concepts to) Boolean
games with incomplete information. Then we present a syntactic characteriza-
tion of these semantics, which can readily be implemented, and we characterize
the computational complexity.

1 Introduction

Boolean games (BGs) are games in which the agents’ goals are formalized using propo-
sitional formulas [12]. The atomic propositional variables occurring in these goals are
called the action variables, since each of them is controlled by one agent. Originally,
BGs were introduced with binary preferences, i.e. the goal of an agent is a single propo-
sitional formula and the utility of an agent is 1 if its goal is satisfied and 0 otherwise [12].
Various suggestions have been made in the literature to overcome this limitation of ex-
pressiveness. One approach is the introduction of costs on the action variables [10].
Another suggestion is a generalization of the BG framework towards compact prefer-
ence relations on the set of outcomes, e.g. by using a prioritized goal base per agent [4].
Recently, the limitation has also been overcome by replacing the classical two-valued
logic for representing the goals by many-valued Łukasiewicz logic [13]. This extension
allows many degrees to which a goal can be satisfied, as opposed to the sole distinction
between satisfaction or non-satisfaction. In this paper, we consider a variant of BGs
with prioritized goal bases. An agent is most eager to achieve the goal with the highest
priority. If this goal cannot be achieved, the agent will settle with the satisfaction of the
goal with the second-highest priority, etc.

Example 1. Bob and Alice are going out. Alice – agent 1 – controls action variable a,
and Bob – agent 2 – controls b. Setting their action variable to true corresponds to at-
tending a sports game; setting it to false corresponds to going to the theatre. Bob and
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Alice’s first priority is to go out together. If they do not go out together, Bob prefers
a sports game, whereas Alice prefers the theatre. This can be represented with a prefer-
ence ordering over the outcomes per agent or with a pay-off matrix:

(a, b) =1 (¬a,¬b) >1 (¬a, b) >1 (a,¬b)
(a, b) =2 (¬a,¬b) >2 (¬a, b) >2 (a,¬b)

Bob \ Alice a ¬a
b (2, 2) (1, 1)
¬b (0, 0) (2, 2)

There are 2 pure Nash equilibria – outcomes such that no one has an incentive to devi-
ate: attending a sports game together and going to the theatre together.

Our aim in this paper is to propose an extension to the BG framework in which
agents can be uncertain about other agents’ goals. An important concern is that the
resulting framework should still enable a compact and intuitive representation of games,
as these are the main strengths of BGs. We therefore introduce a compact syntactic
framework, which we prove to correspond to an intuitive semantic framework. Using
our extended BG framework, we aim to determine rational behaviour for agents which
are uncertain about the other agents’ goals.

Although uncertainty in game theory has been studied extensively (see e.g. [14]),
the literature on BGs with incomplete information is currently limited. Uncertainty can
be either epistemic or stochastic of nature. The former is caused by incomplete knowl-
edge about the game, whereas the latter is e.g. caused by actions which do not always
have the same effect on the outcome. This paper concerns epistemic uncertainty. To the
best of our knowledge, the existing work on BGs with uncertainty also falls in the cat-
egory of epistemic uncertainty. However, in contrast to our work, the uncertainty is not
related to the goals. Grant et al. [11] incorporate uncertainty in the BG framework by
introducing a set of environment variables outside the control of any agent. Each agent
has some (possibly incorrect) belief about the value of the environment variables. The
focus of [11] is to manipulate the BGs by making announcements about the true value
of some environment variables, in order to create a stable solution if there were none
without the announcements. Ågotnes et al. [2] address uncertainty in BGs by extending
the framework of BGs with a set of observable action variables for every agent, i.e.
every agent can only observe the values assigned to a particular subset of action vari-
ables. As a result, agents are not able to distinguish between some strategy profiles, if
these profiles only differ in action variables that are not observable to that agent. Three
notions of verifiable equilibria are investigated, capturing respectively strategy profiles
for which all agents know that they might be pure Nash equilibria (PNEs), strategy pro-
files for which all agents know that they are PNEs and strategy profiles for which it is
common knowledge that they are PNEs, i.e. all agents know that they are PNEs and
all agents know that all agents know that they are PNEs etc. The same authors have
extended this framework to epistemic BGs [1], in which the logical language for de-
scribing goals is broadened to a multi-agent epistemic modal logic. Note, however, that
agents are still completely aware of each others’ goals in this framework.

In this paper, we study BGs with incomplete information, considering agents which
have their own beliefs about the goals of other agents. Although probability theory is
often used to model uncertainty in game theory [14], a possibilistic logic approach pro-
vides a simple and elegant mechanism for modeling partial ignorance, which is closely
related to the notion of epistemic entrenchment [8]. Being based on ranking formulas



(at the syntactic level) or possible worlds (at the semantic level), possibilistic logic has
the advantage of staying close to classical logic. As a result, we will be able to introduce
methods for solving possibilistic BGs that are entirely similar to methods for solving
standard BGs.

Example 2. Consider again the scenario of Example 1, but assume that Bob and Alice
are unaware of each other’s goals. If Bob’s knowledge of Alice’s goal is correct, but
Alice thinks that Bob does not want to join her to the theatre, then, based on their
beliefs, attending a sports game together is a ‘better’ solution than going to the theatre
together. Indeed, Alice believes that Bob will not agree to go to the theatre together, but
they both believe that the other will agree to attend a sports game together.

The paper is structured as follows. First, we briefly recall possibility theory and
BGs. In Section 3, we construct the framework of BGs with uncertainty, both from
an intuitive semantic and a compact syntactic point of view. Moreover, we show that
the proposed semantic and syntactic definitions are equivalent, and we characterise the
complexity of the associated decision problems.

2 Preliminaries

In this section, we recall possibilistic logic and Boolean games. As usual, the logical
language LΦ associated with a finite set of atomic propositional variables (atoms) Φ
contains the following formulas:

– every propositional variable of Φ,
– the logical constants ⊥ and >, and
– the formulas ¬ϕ, ϕ→ ψ, ϕ↔ ψ, ϕ ∧ ψ and ϕ ∨ ψ for every ϕ, ψ ∈ LΦ.

An interpretation of Φ is defined as a subset ω of Φ, with the convention that all atoms
in ω are interpreted as true (>) and all atoms in Φ \ ω are interpreted as false (⊥). An
interpretation can be extended to LΦ in the usual way. If a formula ϕ ∈ LΦ is true in an
interpretation ω, we denote this as ω |= ϕ.

2.1 Possibilistic Logic

Possibilistic logic (see e.g. [9] for a more comprehensive overview) is a popular tool to
encode and reason about uncertain information in an intuitive and compact way.

Definition 1 (Possibility Distribution). Let Ω be a finite universe. A possibility distri-
bution on Ω is a mapping π : Ω → [0, 1].

In possibilistic logic, given a logical language LΦ, the set of interpretations of Φ is
used as the universe of a possibility distribution. If π(ω) = 1, ω is considered to be
completely possible, whereas π(ω) = 0 corresponds to ω being completely impossible.
Available information encodes which worlds cannot be excluded based on available
knowledge. Therefore, smaller possibility degrees are more specific, as they rule out
more possible worlds. A possibility distribution such that π(ω) = 1 for every ω ∈ Ω



thus corresponds to a state of complete ignorance. Note that a possibility distribution is
not the same as a probability distribution, since we do not require that

∑
ω∈Ω π(ω) = 1.

An ordering≤ on all possibility distributions onΩ can be defined as π1 ≤ π2 iff it holds
that π1(ω) ≤ π2(ω), ∀ω ∈ Ω, assuming the natural ordering on [0, 1]. We say that π1
is at least as specific as π2 when π1 ≤ π2. The maximal elements w.r.t. ≤ are called the
least specific possibility distributions. A possibility and necessity measure are induced
by a possibility distribution in the following way.

Definition 2 (Possibility and Necessity Measure). Given a possibility distribution π
in a universe Ω, the possibility Π(A) and necessity N(A) that an event A ⊆ Ω occurs
is defined as:

Π(A) = sup
ω∈A

π(ω); N(A) = inf
ω/∈A

(1− π(ω))

In possibilistic logic, we abbreviate N({ω ∈ Ω |ω |= ϕ}) as N(ϕ) for a formula ϕ.

Definition 3 (Possibilistic Knowledge Base). Let Φ be a set of atoms. A finite set
{(ϕ1, α1), . . . , (ϕm, αm)} of pairs of the form (ϕi, αi), with ϕi ∈ LΦ and αi ∈ ]0, 1],
is a possibilistic knowledge base (KB). It encodes a possibility distribution, namely the
least specific possibility distribution satisfying the constraints N(ϕi) ≥ αi.

The possibility distribution πK encoded by a KB K is well-defined because there is a
unique least specific possibility distribution which satisfies the constraints of K [7].

The necessity measure N satisfies the property N(p∧ q) = min(N(p), N(q)). The
following inference rules are associated with possibilistic logic:

– (¬p ∨ q, α); (p ∨ r, β) ` (q ∨ r,min(α, β)) (resolution rule),
– if p entails q classically, then (p, α) ` (q, α) (formula weakening),
– for β ≤ α, (p, α) ` (p, β) (weight weakening),
– (p, α); (p, β) ` (p,max(α, β)) (weight fusion).

The axioms consist of all propositional axioms with weight 1. These inference rules
and axioms are sound and complete in the following sense [7]: it holds that K ` (ϕ, α)
iff N(ϕ) ≥ α for the necessity measure N induced by πK. Another useful property is
K ` (ϕ, α) iff Kα ` ϕ (in the classical sense) [9], with Kα = {ϕ | (ϕ, β) ∈ K, β ≥ α}
the α-cut of K.

2.2 Boolean Games

We use a generalization of the notion of Boolean games [5] by allowing agents to have
non-dichotomous utilities. This approach is a variant of the BGs with prioritized goal
bases considered in [4]. Our notation is based on [2].

Definition 4 (Boolean Game [4]). A Boolean game (BG) is a tuple G = (Φ1, . . . , Φn,
Γ1, . . . , Γn). The set of agents {1, . . . , n} is denoted as N . For every i ∈ N , Φi is
a finite set of propositional variables, disjoint withΦj ,∀j 6= i. We denoteΦ =

⋃
i∈N Φi.

For every i ∈ N , Γi = {γ1i ; . . . ; γ
p
i } is i’s prioritized goal base. The formula γji ∈ LΦ

is agent i’s goal of priority j. We assume that the number of priority levels p is fixed for
all agents.



The set Φ contains all action variables. Agent i can set the variables under its control,
i.e. those in Φi, to true or false. Note that every variable is controlled by exactly one
agent. By convention, priority numbers are ordered from high priority (level 1) to low
priority (level p). Definition 4 corresponds to a particular case of generalized BGs [4], in
which the preference relation is total for every agent. The results presented in this paper
can easily be generalized to accommodate for partially ordered preference relations.
However, as modeling preferences is not the focus of this paper, we prefer the simpler
setting of Definition 4, for clarity.

Definition 5 (Strategy Profile [2]). For each agent i ∈ N , an interpretation of Φi is
called a strategy of i. An n-tuple ν = (ν1, . . . , νn), with νi a strategy of agent i, is
called a strategy profile or outcome of G.

Because {Φ1, . . . , Φn} is a partition of Φ and νi ⊆ Φi,∀i ∈ N , we also (ab)use the
set notation

⋃
i∈N νi ⊆ Φ for a strategy profile ν = (ν1, . . . , νn). We denote the set

of all strategy profiles as V . With ν−i we denote the projection of the strategy profile
ν = (ν1, . . . , νn) on Φ−i = Φ \ Φi, i.e. ν−i = (ν1, . . . , νi−1, νi+1, . . . , νn). If ν′i is
a strategy of agent i, then (ν−i, ν

′
i) is a shorthand for (ν1, . . . , νi−1, ν′i, νi+1, . . . , νn).

The utility for every agent i follows naturally from the satisfaction of its goals.

Definition 6 (Utility Function). For each i ∈ N and ν ∈ V , the utility for ν is defined
as ui(ν) = p+ 1−min{k | 1 ≤ k ≤ p,ν |= γki }, with min ∅ = p+ 1 by convention.

Note that the specific utility values do not matter since the solution concepts that we will
discuss in this paper are qualitative; only the preference ordering ≥i on V induced by
the utility function ui is relevant: ν ≥i ν′ iff ui(ν) ≥ ui(ν

′), ∀ν,ν′ ∈ V . A common
qualitative solution concept in game theory is the notion of pure Nash equilibrium.

Definition 7 (Pure Nash Equilibrium). A strategy profile ν = (ν1, . . . , νn) for a
BG G is a pure Nash equilibrium (PNE) iff for every agent i ∈ N , νi is a best response
(BR) to ν−i, i.e. ui(ν) ≥ ui(ν−i, ν′i),∀ν′i ⊆ Φi.

Example 1 (continued). Recall the scenario of Example 1. Alice and Bob’s goal bases
can be written as Γ1 = {a ↔ b;¬a} and Γ2 = {a ↔ b; b}. This encoding naturally
captures the fact that e.g. Bob’s first priority is to go out with Alice and his second
priority is to attend a sports game. Both agents have utility 2 in the PNEs {a, b} and ∅.

3 Boolean Games with Incomplete Information

3.1 Semantic Approach

Consider a set of agents N , controlling the action variables in Φ1, . . . , Φn, who are
uncertain about each other’s goals. Let us denote the set of possible goal bases with
p levels as G = {{γ1; . . . ; γp} | ∀k ∈ {1, . . . , p} : γk ∈ LΦ in conjunctive nor-
mal form and (k 6= p ⇒ γk |= γk+1)}. Note that any formula can be transformed
into an equivalent formula in conjunctive normal form (CNF) and that any goal base
{γ1; . . . ; γp} violating the condition γk |= γk+1,∀k 6= p can be transformed into a
semantically equivalent goal base which does satisfy the property, namely {γ1; γ1 ∨



γ2; . . . ;
∨p
m=1 γ

m}. Moreover, all agents have the same set of possible goal bases. Let
us define BG(Φ1, . . . , Φn) = {(Φ1, . . . , Φn, Γ1, . . . , Γn) | Γ1, . . . , Γn ∈ G} as the
set of all possible BGs, given the considered partition of action variables. When the
partition Φ1, . . . , Φn is clear from the context, we abbreviate BG(Φ1, . . . , Φn) as BG.
The knowledge of an agent i about the goals of the other agents can be captured by a
possibility distribution πi over BG, encoding i’s beliefs about what is the actual game
being played.

Example 2. Recall the scenario of Example 1. Suppose Bob has perfect knowledge of
Alice’s preferences, then π2 : BG → {0, 1} maps every BG to 0, except the BGs with
the preference orderings of Example 1, i.e. the actual game being played is the only one
considered possible by Bob. Suppose Alice is certain that Bob wants to attend a sports
game together, or attend the game on his own if attending it together is not possible.
Then π1 : BG → {0, 1} maps all BGs to 0, except those with the preference orderings

{a, b} =1 ∅ >1 {b} >1 {a}
{a, b} >2 {b} >2 ∅ =2 {a}

Bob \ Alice a ¬a
b (2, 2) (1, 1)
¬b (0, 0) (0, 2)

Our first aim is to determine to which degree a specific strategy profile ν is neces-
sarily/possibly a PNE according to agent i. Intuitively, it is possible to degree λ that a
strategy profile ν is a PNE according to i iff there exists a BG G ∈ BG such that ν is a
PNE in G and such that i considers it possible to degree λ that G is the real game being
played, i.e.

Πi({G ∈ BG |ν is a PNE in G}) = λ

Similarly, it is certain to degree λ that a strategy profile ν is a PNE according to i iff
for every G ∈ BG such that ν is no PNE, it holds that i considers it possible to degree
at most 1− λ that G is the real game being played, i.e.

Ni({G ∈ BG |ν is a PNE in G}) = λ

Using the previously introduced degrees, we can define measures which offer a way
to distinguish between multiple equilibria, motivated by Schellings’ notion of focal
points [15]. An equilibrium is a focal point if, for some reason other than its utility,
it stands out from the other equilibria. In our case, the reason can be that agents have
a higher certainty that the outcome is actually a PNE, using the degrees to which a
strategy profile is necessarily a PNE. Note that there might not exist an outcome which
every agent believes is necessarily a PNE, even when the (unknown) game being played
has one or more PNEs. In such cases, the degree to which various strategy profiles are
possibly a PNE could be used to guide decisions.

Definition 8. Given the possibility measures Πi for every i, the degree to which all
agents find it possible that the strategy profile ν is a PNE is

poss(ν) = min
i∈N

Πi({G ∈ BG |ν is a PNE in G})

Similarly, given the necessity measures Ni for every i, the degree to which all agents
find it necessary that ν is a PNE is defined as

nec(ν) = min
i∈N

Ni({G ∈ BG |ν is a PNE in G})



3.2 Syntactic Approach

While the concepts from Section 3.1 define useful notions w.r.t. the possibility or ne-
cessity that agents play best responses or that strategy profiles are PNEs, they cannot be
applied in practice, since the number of BGs in BG is exponential. In this section, we
present a syntactic counterpart which will allow for a more compact representation of
the agents knowledge about the game being played.

Definition 9 (Goal-Knowledge Base). Agent i’s knowledge about the goals of agent j
is encoded in a goal knowledge base Kji of i w.r.t. j containing formulas of the form
(ϕ → gkj , λ), (ϕ ← gkj , λ) or (ϕ ↔ gkj , λ), where 1 ≤ k ≤ p, ϕ ∈ LΦ, λ ∈ ]0, 1] and
gkj a new atom, encoding j’s goal of priority k. A goal-KB Kji is goal-consistent, i.e.
for every ϕ,ψ ∈ LΦ such that (ϕ→ gkj , λ) ∈ K

j
i and (ψ ← gkj , λ) ∈ K

j
i , it holds that

ϕ |= ψ classically. Moreover, Kji contains {(gkj → gk+1
j , 1) | 1 ≤ k ≤ p− 1}.

A goal-KB Kji captures the knowledge of agent i about the goal base of agent j. In our
examples, the formulas {(gkj → gk+1

j , 1) | 1 ≤ k ≤ p − 1}, which belong to Kji by
definition, are not explicitly mentioned. These formulas express that, if agent j’s utility
is at least p + 1 − k, it is at least p − k. Furthermore, the information that we like to
express in Kji exists of necessary and/or sufficient conditions for the utility of agent j.
For instance, agent i might believe that with certainty λ, ϕ is a sufficient condition for
satisfying the goal with priority k, i.e. achieving a utility of at least p + 1 − k. This is
encoded as (ϕ → gkj , λ) ∈ K

j
i . Similarly, agent i might believe with certainty λ that ϕ

is a necessary condition for achieving the goal with priority k, i.e. (ϕ ← gkj , λ) ∈ K
j
i .

These types can be combined as (ϕ ↔ gkj , λ) ∈ K
j
i . Note how adding the atoms gkj to

the language allows us to explicitly encode what an agent knows about the goal of an-
other agent. This is inspired by the approach from [16] for merging conflicting sources,
where similarly additional atoms are introduced to encode knowledge about the un-
known meaning of vague properties, in the form of necessary and sufficient conditions.

Example 4. Recall the scenario of Example 1. Suppose Bob has a good idea of what
Alice’s goal base looks like: K1

2 = {((a ↔ b) ↔ g11 , 0.9), (((a ↔ b) ∨ ¬a) ↔
g21 , 0.6)}. He is very certain that Alice’s first priority is to go out together and rather
certain that she prefers the theatre in case they do not go out together. Although Alice
is very certain that Bob will be pleased if they attend a sports game together, she is
only a little certain whether Bob would be just as pleased if they attend the cultural
event together. She knows Bob prefers to go a sports game as a second priority. Her
knowledge of Bob’s goal base can be captured by K2

1 = {((a ∧ b) → g12 , 0.8), ((¬a ∧
¬b)→ g12 , 0.3), (b→ g22 , 1)}.

It is natural to assume that Kii = {(gki ↔
∨k
m=1 γ

m
i , 1) | k ∈ {1, . . . , p}}, i.e. every

agent knows its own goal base and the corresponding utility. However, this assumption
is not necessary for the results in this paper. By requiring goal-consistency, we ensure
that the knowledge base Kji only encodes beliefs about the goal of agent j. Without
this assumption, it could be possible to derive from Kji formulas of the form ϕ → ψ,
encoding dependencies between the action variables of other agents. Such dependencies



could be useful for modeling suspected collusion, which we will not consider in this
paper. However, we do not demand that the beliefs of an agent are correct, i.e. we do
not assume that each agent considers the actual game possible.

Definition 10 (BG with Incomplete Information). A Boolean game with incomplete
information (BGI) is a tuple G = (Φ1, . . . , Φn, Γ1, . . . , Γn, K1, . . . ,Kn) with Φ1, . . . ,
Φn, Γ1, . . . , Γn as before and Ki = {K1

i , . . . ,Kni }, where Kji is a goal-KB of i w.r.t. j.

Let us now consider how to compute the necessity and possibility that agent j plays
a best response (BR) in the strategy profile ν according to agent i. First note that each
ν ∈ V corresponds unambiguously to a formula ϕν in LΦ in the following way:

ϕν =
∧
{p | p ∈ ν} ∧

∧
{¬p | p ∈ Φ \ ν}

We also introduce the following notations:

ϕν−j =
∧
{p | p ∈ ν ∩ (Φ \ Φj)} ∧

∧
{¬p | p ∈ (Φ \ Φj) \ ν}

ϕνj =
∧
{p | p ∈ νj ∩ Φj} ∧

∧
{¬p | p ∈ Φj \ νj}

Note that ϕν−j
is equivalent with

∨
{ϕ(ν−j ,ν′j)

| ν′j ⊆ Φj}.
Agent j plays a BR in the strategy profile ν iff for every alternative strategy ν′j ⊆ Φj

it holds that uj(ν) ≥ uj(ν−j , ν
′
j). Essentially this boils down to the fact that, for

some k ∈ {0, . . . , p}, uj(ν) ≥ k and ∀ν′j ⊆ Φj : uj(ν−j , ν
′
j) ≤ k. Note that for

k = 0, the first condition is always fulfilled. Similarly, for k = p, the second condition
becomes trivial. Similarly, agent j plays no BR in ν iff there exists a ν′j ⊆ Φj such
that uj(ν) < uj(ν−j , ν

′
j). This means that, for all k ∈ {0, . . . , p}, uj(ν) < k or

∃ν′j ⊆ Φj : uj(ν−j , ν
′
j) > k. The possibility of agent j playing a BR is dual to the

necessity of agent j playing no BR. These insights motivate the following definition.

Definition 11. Let i, j ∈ N be two agents in a BGI G and let ν be a strategy profile of
G. We denote gp+1

j = > and g0j = ⊥ for every j. We say that j plays a BR in ν with
necessity λ according to i, written BRni (j,ν) = λ, iff λ is the greatest value in [0, 1]
for which there exists some k ∈ {0, . . . , p} such that the following two conditions are
satisfied:

1. Kji ` (ϕν → gk+1
j , λ)

2. Kji ` ((ϕν−j
∧ ¬ϕνj )→ ¬gkj , λ)

Let λ∗ be the smallest value greater than 1 − λ which occurs in Kji . Agent i believes
it is possible to degree λ that agent j plays a BR in ν, written BRpi (j,ν) = λ, iff λ
is the greatest value in ]0, 1] for which there exists some k ∈ {0, . . . , p} such that the
following two conditions are satisfied:

1. Kji 0 (ϕν → ¬gk+1
j , λ∗)

2. ∀ν′j ⊆ Φj : K
j
i 0 (ϕ(ν−j ,ν′j)

→ gkj , λ
∗)

If no such λ exists, then BRpi (j,ν) = 0.



Importantly, the syntax in Definition 11 allows to express the certainty or possibililty
that an agent plays a BR, from the point of view of another agent. This forms an im-
portant base from which to define interesting solution concepts or measures in BGIs. In
this paper, we introduce the following measures that respectively reflect to what degree
all agents believe it is necessary and possible that ν is a PNE.

Definition 12. Let G be a BGI. For every strategy profile ν, we define the measures
PNEn and PNEp as:

PNEn(ν) = min
i∈N

min
j∈N

BRni (j,ν), PNEp(ν) = min
i∈N

min
j∈N

BRpi (j,ν)

If we assume that all agents know their own goal, then BRni (i,ν) = BRpi (i,ν) = 0 if ν
is not a PNE. Consequently, if ν is not a PNE, then we have PNEn(ν) = PNEp(ν) = 0.
Note that the measures from Definition 12 induce a total ordering on V , so there always
exists a ν ∈ V such that PNEn or PNEp is maximal.

Example 4 (continued). Let G be the BGI with the aformentioned goal-KBs and as-
sume that Bob and Alice know their own goals. It can be computed that

∅ {a} {b} {a, b}
minj∈N BRn1 (j, .) 0.3 0 0 0.8

minj∈N BRn2 (j, .) 0.9 0 0 0.9

PNEn(.) 0.3 0 0 0.8

The strategy profile {a, b} has the highest value for PNEn. Note that if Bob had the
‘dual’ beliefs of Alice, i.e. K1

2 = {((¬a ∧ ¬b)→ g11 , 0.8), ((a ∧ b)→ g11 , 0.3), (¬a→
g21 , 1)}, then ∅ and {a, b} both had value 0.3 for PNEn.

In [6], we showed that many solution concepts for BGs can be found by using a reduc-
tion to answer set programming. The concepts in this section, such as PNEn, can be
computed using a a straightforward generalization of the idea in [6].

3.3 Soundness and Completeness

In this section, we show that the solution concepts for BGIs that were introduced in Sec-
tion 3.2 indeed correspond to their semantic counterparts from Section 3.1. The classical
theory {γkj ↔ gkj | k ∈ {1, . . . , p}} associated with the goal base Γj = {γ1j ; . . . ; γ

p
j } ∈

G is denoted as Tj . A possibility distribution πji on G can be associated with Kji in the
following natural way, inspired by [3], with max ∅ = 0:

πji (Γj) = 1−max{αl | (ϕl, αl) ∈ Kji , Tj 6|= ϕl} (1)

Intuitively, the higher the certainty of the formulas violated by Γj , the lower the pos-
sibility of Γj being the real goal base of agent j according to agent i. Note that if we
make the reasonable assumption that an agent knows its own goals, then πii maps all
elements of G to 0 except the real goal base of i, which is mapped to 1. Given the BGI
G and using the possibility distributions on G for every j, we can define a possibility
distribution πGi on the set of possible BGs BG:

πGi (G
′) = min

j∈N
πji (Γ

G′

j )



with ΓG
′

j the goal base of agent j in the BG G′. This possibility distribution is the
natural semantic counterpart of the BGI G. We now show that these possibility distri-
butions πGi allow us to interpret the solution concepts that have been defined syntac-
tically in Section 3.2 as instances of the semantically defined solution concepts from
Section 3.1. This is formalized in the following proposition and corollary. We use the
notation brj(ν, Γj) for the propositional variable corresponding to “agent j with goal
base Γj plays a best response in ν”.

Proposition 1. For every ν ∈ V , i, j ∈ N and λ ∈ ]0, 1], it holds that

BRni (j,ν) ≥ λ⇔ ∀Γj ∈ G : ¬brj(ν, Γj)⇒ πji (Γj) ≤ 1− λ (2)

BRpi (j,ν) ≥ λ⇔ ∃Γj ∈ G : brj(ν, Γj) ∧ πji (Γj) ≥ λ (3)

Corollary 1. Let us denote the possibility and necessity measure associated with πGi
as ΠG

i and NG
i . For every ν ∈ V it holds that

NG
i ({G′ ∈ BG |ν is a PNE in G′}) = min

j∈N
BRni (j,ν) (4)

ΠG
i ({G′ ∈ BG |ν is a PNE in G′}) = min

j∈N
BRpi (j,ν) (5)

Consequently, it holds that:

necG({G′ ∈ BG |ν is a PNE in G′}) = PNEn(ν)

possG({G′ ∈ BG |ν is a PNE in G′}) = PNEp(ν)

Before we prove Proposition 1 and Corollary 1, a lemma is stated which deals with the
construction of specific goal bases in G, given the knowledge about these goal bases.

Lemma 1. Given a goal-KBKji , there exists a goal base Γj ∈ G such that πji (Γj) = 1.

Proof (Sketch). It is easily verified that the goal base Γj = (γ1j ; . . . ; γ
p
j ) with γkj the

CNF of
∨
{ϕ |ϕ ∈ LΦ,∃λ > 0 : Kji ` (ϕ→ gkj , λ)} meets the condition πji (Γj) = 1.

Note that the construction of Γj relies on the (constraint) syntax of the formulas in Kji .
We now prove Proposition 1.

⇒ of (2) We prove this by contraposition. Suppose there exists a Γj ∈ G such that

j plays no BR in ν given Γj and πji (Γj) > 1 − λ. Taking (1) into account, the latter
implies that ∀(ϕl, αl) ∈ Kji : Tj 6|= ϕl ⇒ αl < λ. By definition 11, BRni (j,ν) ≥
λ implies that there exists a k′ ∈ {0, . . . , p} such that Kji ` (ϕν → gk

′+1
j , λ) and

Kji ` ((ϕν−j
∧ ¬ϕνj ) → ¬gk′j , λ). It follows that Tj |= ϕν → gk

′+1
j and Tj |=

(ϕν−j
∧ ¬ϕνj ) → ¬gk

′

j . Consequently, by definition of Tj , if k′ ∈ {1, . . . , p − 1}, it
holds that Tj |= ϕν → γk

′+1
j and Tj |= (ϕν−j

∧ ¬ϕνj ) → ¬γk
′

j . This means that

j does play a BR in ν since the goal γk
′+1
j is satisfied in ν and for every alternative

strategy of j, γk
′

j is not satisfied. If k′ = p or k′ = 0 then j’s utility is resp. 0 or p for
every alternative strategy of j. In any case, agent j with goal base Γj plays a BR in ν.
⇐ of (2) Suppose that BRni (j,ν) < λ, i.e. for every k ∈ {0, . . . , p} either Kji 0
(ϕν → gk+1

j , λ) or Kji 0 ((ϕν−j
∧ ¬ϕνj ) → ¬gkj , λ). Let k′ be the greatest index for



which Kji 0 (ϕν → gk
′

j , λ). Note that k′ ≥ 1 since g0j = ⊥. Construct a goal base
Γj = (γ1j ; . . . ; γ

p
j ) with γkj defined as the CNF of the formula∨

{ϕ |ϕ ∈ LΦ,Kji ` (ϕ→ gkj , λ)} ∨ (
∧
{ϕ |ϕ ∈ LΦ,Kji ` (ϕ← gkj , λ)} ∧ ¬ϕν)

for k ≤ k′, and γkj defined as the CNF of the formula∨
{ϕ |ϕ ∈ LΦ,Kji ` (ϕ→ gkj , λ)} ∨ (

∧
{ϕ |ϕ ∈ LΦ, ϕ 6= >,Kji ` (ϕ← gkj , λ)})

for k > k′. One can straightforwardly check that Γj ∈ G and πji (Γj) > 1 − λ by
checking that for every formula (ϕ, α) ∈ Kji with α ≥ λ, it holds that Tj |= ϕ.
Moreover, one can verify that j does not play a BR in ν with the constructed Γj (note
that this would not be guaranteed by the goal base constructed in the proof of Lemma 1).
⇒ of (3) Analogous to the proof of “⇐ of (2)”.

⇐ of (3) We prove directly that BRpi (j,ν) ≥ λ, i.e. ∃k ∈ {0, . . . , p} such that Kji 0
(ϕν → ¬gk+1

j , λ∗) and ∀ν′j : Kji 0 (ϕ(ν−j ,ν′j)
→ gkj , λ

∗). By assumption, there

exists a Γj such that j plays a BR in ν and πji (Γj) ≥ λ. The former means that for
some k′ ∈ {0, . . . , p}, Tj |= ϕν → γjk′+1 and ∀ν′j : Tj |= ϕ(ν−j ,ν′j)

→ ¬γjk′ . Since

Tj |= γjl ↔ glj , it then holds that Tj |= ϕν → gk
′+1
j . Since by definition ϕν 6|= ⊥,

Tj 6|= ⊥ and Tj 6|= ¬ϕν , it follows that Tj 6|= ϕν → ¬gk
′+1
j . The assumption that

πji (Γj) ≥ λ implies that ∀(ϕl, αl) ∈ Kji : Tj 6|= ϕl ⇒ αl ≤ 1− λ. It follows that Kji 0
(ϕν → ¬gk

′+1
j , λ∗). Analogously, we can prove that ∀ν′j : Tj |= ϕ(ν−j ,ν′j)

→ ¬γjk′
implies that ∀ν′j : K

j
i 0 (ϕ(ν−j ,ν′j)

→ gk
′

j , λ
∗).

We now prove (4) of Corollary 1. The proof of (5) is analogous and the rest of
Corollary 1 follows immediately.
Proof of (4) By definition, minj∈N BRni (j,ν) ≥ λ iff BRni (j,ν) ≥ λ for every j ∈
N . We proved that the latter is equivalent with ∀Γj ∈ G : j no BR in ν ⇒ πji (Γj) ≤ 1−
λ. We first prove that this implies that for allG′ ∈ BG it holds that πGi (G

′) ≤ 1−λ if ν
is no PNE inG′. By definition, this means thatNG

i ({G′ ∈ BG |ν is a PNE inG′}) ≥ λ.
Take an arbitrary G′ such that ν is no PNE in G′. Then there exists some j who plays
no BR in ν if its goal base is ΓG

′

j . By assumption, this implies πji (Γ
G′

j ) ≤ 1−λ, which
implies πGi (G

′) ≤ 1 − λ by definition. We now prove the opposite direction. Take an
arbitrary j and Γj such that j plays no BR in ν with the goal base of j equal to Γj .
Using Lemma 1, we can construct a G′ ∈ BG such that ΓG

′

j = Γj and πij′(Γ
G′

j′ ) = 1
for every j′ 6= j. Obviously ν is no PNE in G′ since j plays no BR. By assumption and
definition of NG

i , it holds that πGi (G
′) ≤ 1 − λ. Since πij′(Γ

j′

G′) = 1 for every j′ 6= j,
it follows that πji (Γj) ≤ 1 − λ. Due to Proposition 1, we proved that BRni (j,ν) ≥ λ.
Since j is arbitrary, it follows that minj∈N BRni (j,ν) ≥ λ.

Example 5. Recall the scenario of Example 2. We define the BGI G. Since Bob has
perfect knowledge of Alice’s preferences, his goal-KB can be modeled as K1

2 = K1
1 =

{((a ↔ b) ↔ g11 , 1), (((a ↔ b) ∨ ¬a) ↔ g21 , 1)}. Alice is certain that Bob wants to
attend a sports game together, or attend the game on his own if attending it together is
not possible. This can be captured by the goal-KB K2

1 = {((a ∧ b) ↔ g12 , 1), (b ↔
g22 , 1)}. It is easy to see that πG1 and πG2 correspond to the possibility distributions



π1 and π2 described in Example 2. Despite Alice’s incorrect beliefs, Bob and Alice
are both certain that attending a sports game together is a PNE, since necG({G′ ∈
BG | {a, b} is a PNE in G′}) = PNEn({a, b}) = 1. Contrary to Alice, Bob knows that
going to the theatre together is a PNE as well.

An interesting question is how the agents’ beliefs can influence the proposals they
can make in e.g. bargaining protocols. Suppose for instance that Alice wants to make
Bob a suggestion, then based on her beliefs, it would be rational to suggest to attend
a sports game together. Bob would then rationally agree, based on his beliefs. How-
ever, if Bob were to make a proposal, he can choose between two rational suggestions:
attending a sports game together or going to the theatre together. If he would do the lat-
ter, Alice would know that her beliefs are incorrect, assuming Bob behaves rationally.
In future research, we will investigate these strategical interactions and how they al-
low agents to revise their beliefs. Other research possibilities lie in manipulating BGIs
through communication, for instance through announcements, as investigated for BGs
with environment variables [11]. Another option is to extend the BGI framework, al-
lowing agents to also reason about the beliefs of other agents, although this is likely to
lead to an increase in computational complexity.

4 Decision problems

The decision problems associated with BGIs and the PNEx measures are investigated.

Proposition 2. Let G be a BGI and λ ∈ ]0, 1]. The following decision problems are
ΣP

2 -complete:

1. Does there exist a strategy profile ν with PNEn(ν) ≥ λ?
2. Does there exist a strategy profile ν with PNEp(ν) ≥ λ?

Proof. Hardness of 1 and 2 Both problems are ΣP
2 -hard since they contain the ΣP

2 -
complete problem to decide whether a BG has a PNE as a special case. Indeed, when
G is a BG, we can construct a BGI in which all agents have complete knowledge of
each others goals. Then PNEn(ν) and PNEp(ν) coincide and take values in {0, 1},
depending on whether ν is a PNE or not. Consequently, G has a PNE iff there exists a
ν with PNEn(ν) = PNEp(ν) ≥ λ.
Completeness of 1 We can decide the problem by first guessing a strategy profile ν.

Checking whether PNEn(ν) ≥ λ means checking whether BRni (j,ν) ≥ λ for every
i, j ∈ N . The latter involves checking possibilistic entailments, which can be done in
constant time using an NP-oracle. Therefore, the decision problem is ΣP

2 -complete.
Completeness of 2 We can decide the problem by first guessing a strategy profile ν.

Checking whether PNEp(ν) ≥ λ means checking whether BRpi (j,ν) ≥ λ for ev-
ery i, j ∈ N . To see that the latter can be reduced to checking a polynomial number
of possibilistic entailments, we need to rewrite the condition that ∀ν′j ⊆ Φj : Kji 0
(ϕ(ν−j ,ν′j)

→ gkj , λ
∗). To this end, we define Kk, for every k ∈ {1, . . . , p}, as the

KB Kji in which all formulas defining necessary and/or sufficient conditions for gkj are



preserved; all formulas with necessary conditions for glj (l ≥ k) are translated into nec-
essary conditions for gkj by replacing (ϕ → glj , α) by (ϕ → gkj , α); all formulas with
sufficient conditions for glj (l ≤ k) are translated into sufficient conditions for gkj by
replacing (ϕ← glj , α) by (ϕ← gkj , α); all other formulas are deleted. Then it holds

∀ν′j ⊆ Φj : K
j
i 0 (ϕ(ν−j ,ν′j)

→ gkj , λ
∗)

⇔ ∀ν′j ⊆ Φj : Kk 0 (ϕ(ν−j ,ν′j)
→ gkj , λ

∗)

⇔ ∀ν′j ⊆ Φj : Kk1−λ 0 ϕ(ν−j ,ν′j)
→ gkj

⇔ ∀ν′j ⊆ Φj : Kk1−λ and ϕ(ν−j ,ν′j)
and ¬gkj are consistent

⇔ ∀ν′j ⊆ Φj : K′k1−λ and ϕν′j are consistent

where K′k1−λ is obtaind from Kk1−λ by replacing each occurrence of gk by ⊥ and each
occurrence of p ∈ Φ\Φj by its truth value (> or⊥) in ν. The last condition is equivalent
with K′k1−λ being a tautology, which can be checked with a SAT-solver, i.e. in constant
time with an NP-oracle.

The result of Proposition 2 shows that the complexity for the introduced measures does
not increase compared to PNEs of BGs, since deciding whether a BG has a PNE is also
ΣP

2 -complete. Moreover, given the experimental results reported in [6] for standard
BGs, it seems plausible that a reduction to answer set programming would support an
efficient computation of solutions for medium sized games.

5 Conclusion

We introduced the first BG framework that allows agents to be uncertain about the other
agents’ goals. We have argued that such a scenario can naturally be modeled by associ-
ating with each agent a possibility distribution over the universe of all possible games
(given the considered partition of action variables). While this allows us to define a
variety of solution concepts in a natural way, this semantic approach is not useful in
practice, due to the exponential size of these possibility distributions. Therefore, we
also proposed a syntactic counterpart, which avoids exponential representations by re-
lying on standard possibilistic logic inference, and can be implemented by reduction
to answer set programming. Our main result is that this syntactic characterization in-
deed corresponds to the intended semantic definitions. We furthermore showed that the
computational complexity of reasoning with our Boolean games with incomplete infor-
mation remains at the second level of the polynomial hierarchy. The present framework
leads to several interesting avenues for future work. First, the approach could be gener-
alized for taking into account prior beliefs about the likely behaviour of other players
(e.g. for modeling collusion) and/or for modeling situations where agents may be un-
certain about the actions that are being played by other agents. Moreover, it seems of
interest to analyse the effect of adding communication to the framework, by allowing
agents to strategically ask questions or make proposals to each other in order to reduce
uncertainty or as part of a bargaining process.
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