319 research outputs found
Capturing health and eating status through a nutritional perception screening questionnaire (NPSQ9) in a randomised internet-based personalised nutrition intervention : the Food4Me study
BACKGROUND: National guidelines emphasize healthy eating to promote wellbeing and prevention of non-communicable diseases. The perceived healthiness of food is determined by many factors affecting food intake. A positive perception of healthy eating has been shown to be associated with greater diet quality. Internet-based methodologies allow contact with large populations. Our present study aims to design and evaluate a short nutritional perception questionnaire, to be used as a screening tool for assessing nutritional status, and to predict an optimal level of personalisation in nutritional advice delivered via the Internet. METHODS: Data from all participants who were screened and then enrolled into the Food4Me proof-of-principle study (n = 2369) were used to determine the optimal items for inclusion in a novel screening tool, the Nutritional Perception Screening Questionnaire-9 (NPSQ9). Exploratory and confirmatory factor analyses were performed on anthropometric and biochemical data and on dietary indices acquired from participants who had completed the Food4Me dietary intervention (n = 1153). Baseline and intervention data were analysed using linear regression and linear mixed regression, respectively. RESULTS: A final model with 9 NPSQ items was validated against the dietary intervention data. NPSQ9 scores were inversely associated with BMI (β = -0.181, p < 0.001) and waist circumference (Β = -0.155, p < 0.001), and positively associated with total carotenoids (β = 0.198, p < 0.001), omega-3 fatty acid index (β = 0.155, p < 0.001), Healthy Eating Index (HEI) (β = 0.299, p < 0.001) and Mediterranean Diet Score (MDS) (β = 0. 279, p < 0.001). Findings from the longitudinal intervention study showed a greater reduction in BMI and improved dietary indices among participants with lower NPSQ9 scores. CONCLUSIONS: Healthy eating perceptions and dietary habits captured by the NPSQ9 score, based on nine questionnaire items, were associated with reduced body weight and improved diet quality. Likewise, participants with a lower score achieved greater health improvements than those with higher scores, in response to personalised advice, suggesting that NPSQ9 may be used for early evaluation of nutritional status and to tailor nutritional advice. TRIAL REGISTRATION: NCT01530139 .Peer reviewedFinal Published versio
Plasma metabolic signatures of healthy overweight subjects challenged with an oral glucose tolerance test
Insulin secretion following ingestion of a carbohydrate load affects a multitude of metabolic pathways that simultaneously change direction and quantity of interorgan fluxes of sugars, lipids and amino acids. In the present study, we aimed at identifying markers associated with differential responses to an OGTT a population of healthy adults. By use of three metabolite profiling platforms, we assessed these postprandial responses of a total of 202 metabolites in plasma of 72 healthy volunteers undergoing comprehensive phenotyping and of which half enrolled into a weight-loss program over a three-month period. A standard oral glucose tolerance test (OGTT) served as dietary challenge test to identify changes in postprandial metabolite profiles. Despite classified as healthy according to WHO criteria, two discrete clusters (A and B) were identified based on the postprandial glucose profiles with a balanced distribution of volunteers based on gender and other measures. Cluster A individuals displayed 26% higher postprandial glucose levels, delayed glucose clearance and increased fasting plasma concentrations of more than 20 known biomarkers of insulin resistance and diabetes previously identified in large cohort studies. The volunteers identified by canonical postprandial responses that form cluster A may be called pre-pre-diabetics and defined as “at risk” for development of insulin resistance. Moreover, postprandial changes in selected fatty acids and complex lipids, bile acids, amino acids, acylcarnitines and sugars like mannose revealed marked differences in the responses seen in cluster A and cluster B individuals that sustained over the entire challenge test period of 240 min. Almost all metabolites, including glucose and insulin, returned to baseline values within this timeframe, except a variety of amino acids and here those that have been linked to diabetes development. Analysis of the corresponding metabolite profile in a fasting blood sample may therefore allow for early identification of these subjects at risk for insulin resistance without the need to undergo an OGTT
Clustering of adherence to personalised dietary recommendations and changes in healthy eating index within the Food4Me study
Objective: To characterise clusters of individuals based on adherence to dietary recommendations and to determine whether changes in Healthy Eating Index (HEI) scores in response to a personalised nutrition (PN) intervention varied between clusters.
Design: Food4Me study participants were clustered according to whether their baseline dietary intakes met European dietary recommendations. Changes in HEI scores between baseline and month 6 were compared between clusters and stratified by whether individuals received generalised or PN advice.
Setting: Pan-European, Internet-based, 6-month randomised controlled trial.
Subjects: Adults aged 18–79 years (n1480).
Results: Individuals in cluster 1 (C1) met all recommended intakes except for red meat, those in cluster 2 (C2) met two recommendations, and those in cluster 3 (C3) and cluster 4 (C4) met one recommendation each. C1 had higher intakes of white fish, beans and lentils and low-fat dairy products and lower percentage energy intake from SFA (P<0·05). C2 consumed less chips and pizza and fried foods than C3 and C4 (P<0·05). C1 were lighter, had lower BMI and waist circumference than C3 and were more physically active than C4 (P<0·05). More individuals in C4 were smokers and wanted to lose weight than in C1 (P<0·05). Individuals who received PN advice in C4 reported greater improvements in HEI compared with C3 and C1 (P<0·05).
Conclusions: The cluster where the fewest recommendations were met (C4) reported greater improvements in HEI following a 6-month trial of PN whereas there was no difference between clusters for those randomised to the Control, non-personalised dietary intervention
Recommended from our members
A dietary feedback system for the delivery of consistent personalized dietary advice in the web-based multicenter Food4Me study
Background: Despite numerous healthy eating campaigns, the prevalence of diets high in saturated fatty acids, sugar, and salt and low in fiber, fruit, and vegetables remains high. With more people than ever accessing the Internet, Web-based dietary assessment instruments have the potential to promote healthier dietary behaviors via personalized dietary advice.
Objective: The objectives of this study were to develop a dietary feedback system for the delivery of consistent personalized dietary advice in a multicenter study and to examine the impact of automating the advice system.
Methods: The development of the dietary feedback system included 4 components: (1) designing a system for categorizing
nutritional intakes; (2) creating a method for prioritizing 3 nutrient-related goals for subsequent targeted dietary advice; (3)
constructing decision tree algorithms linking data on nutritional intake to feedback messages; and (4) developing personal feedback
reports. The system was used manually by researchers to provide personalized nutrition advice based on dietary assessment to 369 participants during the Food4Me randomized controlled trial, with an automated version developed on completion of the study.
Results: Saturated fatty acid, salt, and dietary fiber were most frequently selected as nutrient-related goals across the 7 centers.
Average agreement between the manual and automated systems, in selecting 3 nutrient-related goals for personalized dietary
advice across the centers, was highest for nutrient-related goals 1 and 2 and lower for goal 3, averaging at 92%, 87%, and 63%,
respectively. Complete agreement between the 2 systems for feedback advice message selection averaged at 87% across the centers.
Conclusions: The dietary feedback system was used to deliver personalized dietary advice within a multi-country study. Overall, there was good agreement between the manual and automated feedback systems, giving promise to the use of automated systems
for personalizing dietary advice
Personalised nutrition advice reduces intake of discretionary foods and beverages: findings from the Food4Me randomised controlled trial
Background: The effect of personalised nutrition advice on discretionary foods intake is unknown. To date, two national classifications for discretionary foods have been derived. This study examined changes in intake of discretionary foods and beverages following a personalised nutrition intervention using these two classifications. Methods: Participants were recruited into a 6-month RCT across seven European countries (Food4Me) and were randomised to receive generalised dietary advice (control) or one of three levels of personalised nutrition advice (based on diet [L1], phenotype [L2] and genotype [L3]). Dietary intake was derived from an FFQ. An analysis of covariance was used to determine intervention effects at month 6 between personalised nutrition (overall and by 10 levels) and control on i) percentage energy from discretionary items and ii) percentage contribution of total fat, SFA, total sugars and salt to discretionary intake, defined by Food Standards Scotland (FSS) and Australian Dietary Guidelines (ADG) classifications. Results: Of the 1607 adults at baseline, n=1270 (57% female) completed the intervention. Percentage sugars from FSS discretionary items was lower in personalised nutrition vs control (19.0 \ub1 0.37 vs 21.1 \ub1 0.65; P=0.005). Percentage energy (31.2 \ub1 0.59 vs 32.7 \ub1 0.59; P=0.031), percentage total fat (31.5 \ub1 0.37 vs 33.3 \ub1 0.65; P=0.021), SFA (36.0 \ub1 0.43 vs 37.8 \ub1 0.75; P=0.034) and sugars (31.7 \ub1 0.44 vs 34.7 \ub1 0.78; P<0.001) from ADG discretionary items were lower in personalised nutrition vs control. There were greater reductions in ADG percentage energy and percentage total fat, SFA and salt for those randomised to L3 vs L2. 21Conclusions: Compared with generalised dietary advice, personalised nutrition advice achieved greater reductions in discretionary foods intake when the classification included all foods high in fat, added sugars and salt. Future personalised nutrition approaches may be 24 used to target intakes of discretionary foods
Recommended from our members
Higher vegetable protein consumption, assessed by an isoenergetic macronutrient exchange model, is associated with a lower presence of overweight and obesity in the web-based Food4me European study
The objective was to evaluate differences in macronutrient intake and to investigate the possible association between consumption of vegetable protein and the risk of overweight/obesity, within the Food4Me randomised, online intervention. Differences in macronutrient consumption among the participating countries grouped by EU Regions (Western Europe, British Isles, Eastern Europe and Southern Europe) were assessed. Relation of protein intake, within isoenergetic exchange patterns, from vegetable or animal sources with risk of overweight/obesity was assessed through the multivariate nutrient density model and a multivariate-adjusted logistic regression. A total of 2413 subjects who completed the Food4Me screening were included, with self-reported data on age, weight, height, physical activity and dietary intake. As success rates on reducing overweight/obesity are very low, form a public health perspective, the elaboration of policies for increasing intakes of vegetable protein and reducing animal protein and sugars, may be a method of combating overweight/obesity at a population level
Evaluation of energy and dietary intake estimates from a food frequency questionnaire using independent energy expenditure measurement and weighed food records
<p>Abstract</p> <p>Background</p> <p>We have developed a food frequency questionnaire (FFQ) for the assessment of habitual diet, with special focus on the intake of fruit, vegetables and other antioxidant-rich foods and beverages. The aim of the present study was to evaluate the relative validity of the intakes of energy, food and nutrients from the FFQ.</p> <p>Methods</p> <p>Energy intake was evaluated against independent measures of energy expenditure using the ActiReg<sup>® </sup>system (motion detection), whereas 7-days weighed food records were used to study the relative validity of food and nutrient intake. The relationship between methods was investigated using correlation analyses and cross-classification of participants. The visual agreement between the methods was evaluated using Bland-Altman plots.</p> <p>Results</p> <p>We observed that the FFQ underestimated the energy intake by approximately 11% compared to the energy expenditure measured by the ActiReg<sup>®</sup>. The correlation coefficient between energy intake and energy expenditure was 0.54 and 32% of the participants were defined as under-reporters. Compared to the weighed food records the percentages of energy from fat and added sugar from the FFQ were underestimated, whereas the percentage of energy from total carbohydrates and protein were slightly overestimated. The intake of foods rich in antioxidants did not vary significantly between the FFQ and weighed food records, with the exceptions of berries, coffee, tea and vegetables which were overestimated. Spearman's Rank Order Correlations between FFQ and weighed food records were 0.41 for berries, 0.58 for chocolate, 0.78 for coffee, 0.61 for fruit, 0.57 for fruit and berry juices, 0.40 for nuts, 0.74 for tea, 0.38 for vegetables and 0.70 for the intake of wine.</p> <p>Conclusions</p> <p>Our new FFQ provides a good estimate of the average energy intake and it obtains valid data on average intake of most antioxidant-rich foods and beverages. Our study also showed that the FFQs ability to rank participants according to intake of total antioxidants and most of the antioxidant-rich foods was good.</p
- …