1,401 research outputs found

    Sensitivity of single and multiple cosmic ray neutrons to the surrounding medium in a lead-free monitor

    Get PDF
    In 1981-1985 the neutron component of cosmic rays was recorded, the effect of cosmic ray multiplication in lead being disregarded. The recording device consisted of neutron counters placed in a polyethylene retarder (polyethylene tubes with wall thickness of 2 cm). The device registered neutrons formed directly on the surface or not deep underground; the intensity of neutrons depended on the chemical composition of the substance. The neutron component was also measured in the Moscow Canal, Belomor-Baltic Canal, and in the Atlantic Ocean. The time variation of 5 minute data of the intensity obtained in the Belomor-Baltic Canal and in the Atlantic Ocean relative to the mean value in the open sea (in %) is presented

    Coupling functions for lead and lead-free neutron monitors from the latitudinal measurements performed in 1982 in the research station Academician Kurchatov

    Get PDF
    The latitudinal behavior of intensities and multiplicities was registered by the neutron monitor 2 NM and the lead-free neutron monitor 3 SND (slow-neuron detector) in the equator-Kaliningrad line in the Atlantic Ocean. Coupling coefficients for 3 SND show the sensitivity of this detector to primary particles of cosmic rays of energies on the average lower than for 2 NM. As multiplicities increase, the coupling coefficients shift towards higher energies

    Long-period cosmic ray variations and their altitude dependence

    Get PDF
    Long-period variations were studied from the data of ground-based cosmic ray (CR) observations. In spite of a large value of an 2-year variation, it is more difficult to obtain its spectrum than the spectrum of a solar diurnal variation. Serious obstacles are caused by changes in individual detectors and in the whole world wide network of CR detectors, by the absence of continuity and uniformity of data series, by various apparatus variations. In discrimination and investigation of long-period variations an important and determining point is preparation and preliminary analysis of data

    Magnetization of nanoparticle systems in a rotating magnetic field

    Get PDF
    The investigation of a sizable thermal enhancement of magnetization is put forward for uniaxial ferromagnetic nanoparticles that are placed in a rotating magnetic field. We elucidate the nature of this phenomenon and evaluate the resonant frequency dependence of the induced magnetization. Moreover, we reveal the role of magnetic dipolar interactions, point out potential applications and reason the feasibility of an experimental observation of this effect.Comment: 10 pages, 2 figure

    Micromagnetic simulations of interacting dipoles on a fcc lattice: Application to nanoparticle assemblies

    Full text link
    Micromagnetic simulations are used to examine the effects of cubic and axial anisotropy, magnetostatic interactions and temperature on M-H loops for a collection of magnetic dipoles on fcc and sc lattices. We employ a simple model of interacting dipoles that represent single-domain particles in an attempt to explain recent experimental data on ordered arrays of magnetoferritin nanoparticles that demonstrate the crucial role of interactions between particles in a fcc lattice. Significant agreement between the simulation and experimental results is achieved, and the impact of intra-particle degrees of freedom and surface effects on thermal fluctuations are investigated.Comment: 10 pages, 9 figure

    Testing the proposed link between cosmic rays and cloud cover

    Full text link
    A decrease in the globally averaged low level cloud cover, deduced from the ISCCP infra red data, as the cosmic ray intensity decreased during the solar cycle 22 was observed by two groups. The groups went on to hypothesise that the decrease in ionization due to cosmic rays causes the decrease in cloud cover, thereby explaining a large part of the presently observed global warming. We have examined this hypothesis to look for evidence to corroborate it. None has been found and so our conclusions are to doubt it. From the absence of corroborative evidence, we estimate that less than 23%, at the 95% confidence level, of the 11-year cycle change in the globally averaged cloud cover observed in solar cycle 22 is due to the change in the rate of ionization from the solar modulation of cosmic rays

    Far-Ultraviolet Color Gradients in Early-Type Galaxies

    Get PDF
    We discuss far-UV (1500 A) surface photometry and FUV-B color profiles for 8 E/S0 galaxies from images taken with the Ultraviolet Imaging Telescope, primarily during the Astro-2 mission. In three cases, the FUV radial profiles are more consistent with an exponential than a de Vaucouleurs function, but there is no other evidence for the presence of a disk or of young, massive stars. In all cases except M32 the FUV-B color becomes redder at larger radii. There is a wide range of internal radial FUV-B color gradients. However, we find no correlation between the FUV-B color gradients and internal metallicity gradients based on Mg absorption features. We conclude that metallicity is not the sole parameter controlling the "UV upturn component" in old populations.Comment: 11 pages; tar.gz file includes LaTeX text file, 3 PostScript figures. Paper to be published in ApJ Letter

    RAT J0455+1305: A rare hybrid pulsating subdwarf B star

    Full text link
    We present results on the second-faintest pulsating subdwarf B (sdB) star known, RAT J0455+1305, derived from photometric data obtained in 2009. It shows both short and long periods oscillations, theoretically assigned as pressure and gravity modes. We identify six short-period frequencies (with one being a combination) and six long-period frequencies. This star is the fourth hybrid sdB star discovered so far which makes it of special interest as each type of mode probes a different part of the star. This star is similar to the sdB hybrid pulsator Balloon 090100001 in that it exhibits short-period mode groupings, which can be used to identify pulsation parameters and constrain theoretical models.Comment: published in MNRA

    Surface Grafting of Poly(L-glutamates). 2. Helix Orientation

    Get PDF
    In this paper the average helix orientation of surface-grafted poly(γ-benzyl L-glutamate) (PBLG), poly(γ-methyl L-glutamate) (PMLG), and poly(γ-methyl L-glutamate)-co-(γ-n-stearyl L-glutamate) (PMLGSLG 70/30) was investigated by means of FT-IR transmission spectroscopy. The theoretical relation between the average tilt angle (θ) and the absorption peak areas of three different backbone amide bands could be calculated because their transition dipole moment directions with respect to the helix axis were known. From the normalized absorptions, the average tilt angles of grafted helices of PBLG, PMLG, and PMLGSLG 70/30 were determined. The somewhat larger average angle of PMLG helices of 35 ± 5° with respect to the substrate compared to the value of 32 ± 5° of PBLG was due to the higher grafting density of PMLG. Because of the smaller helix diameter as a result of the smaller size of the methyl side group, more PMLG helices grew on the same surface area. Sterical hindrance and unfavorable polar interactions between unidirectional aligned helices forced the PMLG helices in a more upright arrangement. The even more perpendicular orientation of PMLGSLG 70/30 (48 ± 6°) could be the result of incorporation of mainly γ-methyl L-glutamate N-carboxyanhydride (MLG-NCA) monomers during the initiation step. Incorporation of the much larger γ-n-stearyl L-glutamate N-carboxyanhydride (SLG-NCA) monomers afterward lead to enlarged angles with respect to the substrate. Due to swelling, a pronounced change in helix orientation of grafted PMLGSLG 70/30 in n-hexadecane was observed, resulting in an almost perpendicular helix orientation.

    The MultiSite Spectroscopic Telescope campaign: 2m spectroscopy of the V361 Hya variable PG1605+072

    Full text link
    We present results and analysis for the 2m spectroscopic part of the MultiSite Spectroscopic Telescope (MSST) campaign undertaken in May/June 2002. The goal of the project was to observe the pulsating subdwarf B star PG1605+072 simultaneously in velocity and photometry and to resolve as many of the >50 known modes as possible, which will allow a detailed asteroseismological analysis. We have obtained over 150 hours of spectroscopy, leading to an unprecedented noise level of only 207m/s. We report here the detection of 20 frequencies in velocity, with two more likely just below our detection threshold. In particular, we detect 6 linear combinations, making PG1605+072 only the second star known to show such frequencies in velocity. We investigate the phases of these combinations and their parent modes and find relationships between them that cannot be easily understood based on current theory. These observations, when combined with our simultaneous photometry, should allow asteroseismology of this most complicated of sdB pulsators.Comment: 9 pages, 5 figures, accepted for publication in A&A; Figure 1 at lower resolution than accepted versio
    corecore