66 research outputs found

    A New Approach for Computing the Bandwidth Statistics of Avalanche Photodiodes

    Get PDF
    A new approach for characterizing the avalanche-buildup-time-limited bandwidth of avalanche photodiodes (APDs) is introduced which relies on the direct knowledge of the statistics of the random response time. The random response time is the actual duration of the APD’s finite buildup-limited random impulse response function. A theory is developed characterizing the probability distribution function (PDF) of the random response time. Recurrence equations are derived and numerically solved to yield the PDF of the random response time. The PDF is then used to compute the mean and the standard deviation of the bandwidth. The dependence of the mean and the standard deviation of the bandwidth on the APD mean gain and the ionization coefficient ratio is investigated. Exact asymptotics of the tail of the PDF of the response time are also developed to aid the computation efficiency. The technique can be readily applied to multiplication models which incorporate dead space and can be extended to cases for which the carrier ionization coefficient is position dependent

    Ecological network construction based on minimum cumulative resistance for the City of Nanjing, China

    Get PDF
    With economic growth and the improvement of the urbanization level, human activities have constantly interfered with landscape patterns, resulting in serious threats to regional ecological security. Therefore, it is of great significance to study the evolution and optimization of the landscape patterns. Based on three TM images from 1990, 2000, and 2010, and selected landscape pattern indexes, the changes in the landscape pattern of Nanjing in the past twenty years were studied based on landscape ecology theory using Remote Sensing (RS) and a Geographical Information System (GIS). The ecological network was built on the basis of extracted ecological nodes and the minimum cumulative resistance. The results show that changes in the landscape pattern of the city of Nanjing were notable. Class-level indexes indicate that the farmland landscape area decreased and the degree of patch fragmentation increased. The construction land area increased, and it tended to show dispersed distribution. The proportion of forest land increased and the shape of patches became more complex. The proportion of water firstly showed a decrease, followed by an increase, and the shape of the water became more regular. Landscape-level indexes indicate that biological diversity and the degree of fragmentation increased. Spatial heterogeneity of the natural landscape increased, and the patch shape of each landscape type developed similarly. The results also call for stepping-stones to enhance the connectivity and optimization of the ecological network, which will help improve ecological services and improve the landscape pattern of the city

    Tea polyphenols induced apoptosis of breast cancer cells by suppressing the expression of Survivin

    Get PDF
    To study the mechanism of tea polyphenols (TP)-induced apoptosis of breast cancer cells. Proliferation of MCF-7 and SK-BR-3 cells was evaluated by MTT assays. Cellular ultrastructure was examined by electron microscopy. Apoptosis was detected by TUNEL. PCNA, Cyclin D1, Cyclin E and Survivin expression was measured by Western blot. Cell proliferation was significantly inhibited by TP. Spindle and round cells were loosely distributed with increased particles after TP treatment. Increased cell size, frequent nuclear atypia and a collapse of apoptosis were observed. The nucleus was pushed towards one side, while the cytoplasm was rich in free ribosome. The membrane of mitochondria was thickening, and the cell apoptotic body was observed. TP treated cells experienced significantly enhanced apoptosis compared with 5-Fu treated or control groups. The expression of survivin was downregulated by TP. To conclude, TP can inhibit cell growth and induce apoptosis through downregulating the expression of survivin in breast cancer

    Channel-coded optical-code-division multiple-access networks

    No full text

    Ecological Network Construction Based on Minimum Cumulative Resistance for the City of Nanjing, China

    Get PDF
    With economic growth and the improvement of the urbanization level, human activities have constantly interfered with landscape patterns, resulting in serious threats to regional ecological security. Therefore, it is of great significance to study the evolution and optimization of the landscape patterns. Based on three TM images from 1990, 2000, and 2010, and selected landscape pattern indexes, the changes in the landscape pattern of Nanjing in the past twenty years were studied based on landscape ecology theory using Remote Sensing (RS) and a Geographical Information System (GIS). The ecological network was built on the basis of extracted ecological nodes and the minimum cumulative resistance. The results show that changes in the landscape pattern of the city of Nanjing were notable. Class-level indexes indicate that the farmland landscape area decreased and the degree of patch fragmentation increased. The construction land area increased, and it tended to show dispersed distribution. The proportion of forest land increased and the shape of patches became more complex. The proportion of water firstly showed a decrease, followed by an increase, and the shape of the water became more regular. Landscape-level indexes indicate that biological diversity and the degree of fragmentation increased. Spatial heterogeneity of the natural landscape increased, and the patch shape of each landscape type developed similarly. The results also call for stepping-stones to enhance the connectivity and optimization of the ecological network, which will help improve ecological services and improve the landscape pattern of the city

    Spatio-Temporal Variation of Total Nitrogen and Ammonia Nitrogen in the Water Source of the Middle Route of the South-To-North Water Diversion Project

    No full text
    The quantitative inversion of the concentrations of water quality parameters could clarify the temporal and spatial distribution characteristic, migration, and conversion of water quality parameters. This study took the Danjiangkou Reservoir as the research object, and established an inversion model based on the reflectance of different band combinations of remote sensing analyses on Sentinel-2 images, combined with the water quality monitoring data of total nitrogen (TN) and ammonia nitrogen (NH3-N) of the sampling sites in February 2016. The inversion results of TN and NH3-N in 2020 were obtained, the variation of TN and NH3-N concentrations in the reservoir area were analyzed, and the factors accounting for the variation were discussed. The results indicated that the fitting accuracy using the established model was high for both TN and NH3-N, and R2 was 0.782 for TN and 0.851 for NH3-N, respectively, showing high predication accuracy, which could be suitable for remote sensing inversion of TN and NH3-N concentrations in the Danjiangkou Reservoir. The NH3-N concentration of the Danjiangkou Reservoir was in line with Class I from 2016 to 2020, while the TN concentration was between Class III and IV. The inter-annual changes indicated that the overall water quality had an upward trend. The main tributary in the northern of the Danjiangkou Reservoir had a heavy load of TN, and after entering the reservoir, the flow velocity decreased, which caused nitrogen to accumulate at the river entrance, leading to a high TN concentration. The large slope of the mountainous area cause soil erosion. The lost soil and water carried a large amount of pesticides and fertilizers, and the ground runoff carried a large amount of nitrogen into water body, which could account for the high NH3-N concentration on the east and west sides of the southern part of the Danjiangkou Reservoir
    • …
    corecore