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ABSTRACT

RANDOM TIME RESPONSE STATISTICS OF AVALANCHE 
PHOTODIODES AND ITS DEPENDENCE ON THE MEAN GAIN 
AND THE IMPACT IONIZATION RATIO

Name: Guoquan Dong
University of Dayton, 1998

Advisor: Dr. Majeed M. Hayat

The basic properties of avalanche photodiodes (APD’s) and previous work

related to the statistics of the APD random response time are first briefly reviewed.

Following the detailed discussion of the avalanche multiplication processes in the 

multiplication region of APD’s, the probability density function of the avalanche- 

limited random response time of APD’s is characterized using renewal equations. The

statistics of the random response time are then numerically computed from the renewal

equations by using Picard iterations, and the dependence of the statistics of the random

response time on the mean gain and the impact ionization ratio is investigated. It is

found that the probability density function of the random response time decays

exponentially. This thesis provides a new method to completely calculate the statistics

of APD random response time, avoiding the complex numerically computation of the

transport equations used by conventional methods.
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To investigate the asymptotic behaviour of the probability density function of the

random response time, the decay rates of the probability density function of the

random response time, as functions of mean gain and the impact ionization ratio, are

analytically determined. The basic assumption for the analytical solution is that the

distribution functions of both hole and electron converge to unity exponentially.

Comparison of the results shows that the exact numerical results are in good 

agreement with the analytical approximate solutions. Meanwhile, the analytical

solutions to the decay rate show that the decay rate decreases as the mean APD gain

increases, and decreases nearly exponentially as the impact ionization ratio increases.

The model developed in this thesis will facilitate developing simple approximate 

expressions for the receiver photocurrent. Two simple impulse response function 

models for the APD are proposed, and the analytical equations to calculate the

statistics of the impulse response functions are derived in terms of the probability

density function of the random response time. Finally, the possibility of extending the 

analysis to more complex models (e.g. incorporating the dead space effect and the non-

uniform ionization coefficients) are discussed.
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CHAPTER I

INTRODUCTION

The demand for gigabit-rate fiber-optic communication systems and the rising 

popularity of the fiber optical links in RF/microwave systems have led to many advances 

in high-speed photodetector technology. Specific application requirements have spurred 

the development of novel device structures to improve the speed, responsivity, and the 

power handling capabilities of high speed detectors. Simultaneously, advances in 

materials and processing techniques have made these developments possible. In recent 

years there has been a renewed interest and widespread research effort in developing 

avalanche photodiodes (APD’s). The driving force for this activity has been the 

development of new lightwave communication systems exploiting the low-loss and low- 

dispersion spectral windows at 1.3 and 1.55 (im of silica optical fibers [1-5]. Moreover,

APD receivers exhibit higher sensitivity than PIN photodiodes due to the internal gain 

provided by APD’s.

Conventional InGaAs APD’s have a limited gain-band width product and a poor 

noise figure because of the small difference of impact ionization coefficient ratio in IV-V

semiconductors used to fabricate these detectors [6,7]. Silicon APD’s are well known for

low multiplication noise and high gain-bandwidth product due to the large difference of 

hole and electron ionization coefficients [8], However, the quantum efficiency of silicon



APD’s is negligible at 1.3-1.55 pm, making them unusable for fiber communication

systems. To enhance the gain and speed, and to obtain high gain-bandwidth product and 

high quantum efficiency, various novel APD structures have been proposed [9-16]. These 

include separate absorption, graded charge, and multiplication (SAGCM) structures [9- 

11], and more recently the resonant-cavity-enhanced photodiodes (RCE) have been

realized as avalanche photodiodes [12-17],

With the development of the sophisticated structures and materials, there is an

increasing need to develop better modeling techniques that can analyze the device 

performance and predict correctly and quickly the important operating parameters of the 

device. One of the important parameters of the device is the maximum bit rate at which it 

can operate. The response time greatly affects the maximum bit rate due to intersymbol 

interference (ISI) (resulting from the residual current due to the previous pulse). This 

effect is particularly important in avalanche photodetectors where the processes of 

avalanche multiplication have an inherent finite response time. For prediction of the

maximum bit rate of an APD together with the overall performance of the receiver

allowable, an accurate model for the APD time response is required. As we will discuss 

later, the multiplication process involved in the multiplication region of the APD is a 

random process. The statistical properties of the APD, such as the mean gain, the excess

noise factor, and the probability density function (pdf) of the gain and the impulse 

response function are therefore very important in designing high data rate communication 

systems. Among these properties, the statistical properties of the impulse response
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function of the APD play a crucial role in estimating the performance of such high data

rate systems [18-20].

In this introductory chapter, the basic operation of APD’s is briefly examined. The

avalanche multiplication process will then be discussed in detail in the Chapter II. We 

will discuss the multiplication process separately for two reasons: First, this is the 

fundamental process, which completely determines the statistics of the gain and time 

response of an APD, and second, whatever the device structure is, the multiplication 

process is basically the same. The previous studies on the statistics of the impulse 

response function of the APD are briefly reviewed in the Section 2.2. Based on the 

techniques from branching theory, a general mathematical model for computing the 

statistics of the random response time is presented in the form of renewal integral 

equations. In contrast to the traditional methods of computing the mean, standard

deviation and correlation of the APD impulse response function [17,18, 21-25], our 

method provides a simple way to compute the pdf of the random response time. After 

finding the pdf of the random response time, the statistical quantities associated with 

random response time, such as the mean of the response time, and its variance, as well as 

statistics of the impulse response function can be found. It is known that the decay rate of 

the pdf of the random response time plays an important role in calculating its associated

statistical quantities. However, accurately computing the decay rate numerically (exactly) 

for high gain and large ionization coefficients ratio is very difficult. Therefore, an 

approximation solution for the decay rate of the pdf of the random response time is 

developed in the chapter III, and the validity of the approximation is discussed.

3



As described above, from the pdf of the random response time, the mean, the

variance, and the autocorrelation function of the impulse response function can be 

derived easily avoiding the complex numerical solutions of the transport equations. This 

topic is addressed in the Chapter IV. Also, the signal-to-noise ratio for specific simple 

impulse response function model, together with the potential of further application of our 

theory are discussed. Finally, the main results of this thesis and comments on their 

significance are summarized in the Chapter V.

1.1 Principle of operation of an APD

Unlike conventional P-N or P-I-N photodiodes that generate a single electron-hole 

pair in response to the absorption of a photon, an APD can generate many electron-hole 

pairs from a single absorbed photon. This gain characteristic of the APD is due to the 

multiplication processes in the multiplication region (Figure 1.1)[26-32], This internal 

gain makes APD’s attractive for use in constructing sensitive receivers. Impact ionization 

is the basic parameter for multiplication of electrons and holes in high electric fields. The 

probabilities that an electron and a hole will have an ionizing collision in a distance dx 

are ocdx and fidx, respectively, where a and are the impact ionization coefficients for

the electron and hole. For the carriers to obtain sufficient energy, the avalanche process

requires a high bias voltage in order to generate a high electric field in the multiplication 

region. For a given temperature, the impact ionization coefficients are exponentially 

dependent on the electric field and have the functional form given by [33],
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a = a exp(-(U)) (1.1)

where a, b and c are experimentally determined constants, and E is the magnitude of the 

electric field in the multiplication region. Generally, this equation holds only over a 

limited range of the electric field due to the simplistic model on which it is based. Using

Baraff’s generalized

model [26], Okuto and Crowell developed a simple analytic expression for a and (3 that is

valid over a wide range of electric fields [27],

a -
z eEy f r V 14 Z^A"4

\ ' 7

i \

exp 0.217 0.217 ( E;
eF&

(1-2)+

V 7

in Eq.(1.2), Eit Er and A are defined as the impact ionization threshold energy, the optical 

photon energy, and the mean free path for optical photon scattering, respectively, and e is 

the electron charge.

An important parameter for describing APD performance is the impact ionization

ratio defined as,

a

which is extensively used in the literature. From the application, the impact ionization 

coefficients, and therefore k, can be determined for different types of APD and different

operating conditions using Eq.(1.2).
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Absorption region Gain region

L-----------------—►

------ !--- ----------------------- --- !----
!

hv —►
Photon

Figure 1.1. An APD together with the electric-field distribution inside various 
layers under reverse bias

Impack ionization ratio k

Figure 1.2. Mean gain and the impact ionization ratio scatter diagram for 
different types of APD’s
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1.2 APD excess noise factor

If the avalanche processes in the multiplication region were deterministic, in other 

words, if every injected photo carrier would produce the same gain G, the resulting noise 

would only be the multiplied input shot noise due to the random arrival of the signal 

photons. The avalanche processes is, instead, intrinsically statistical in nature so that 

individual carriers in general have different avalanche gains, characterized by a 

probability distribution. The excess noise factor then can be defined as [33,34],

For typical silicon (Si) APD’s, k ranges from 0.02-0.05, see table (1.1). For 

indium-gallium-arsenide (InGaAs) APD’s, k ranges 0.5-0.7. As results, InGaAs APD are 

noisier than Si APD’s. For germanium (Ge) APD’s, k ranges 0.7-1.0, which means 

devices using Ge have higher noise level than devices obtained from such Si or InGaAs.

Table 1.1: Characteristics of common APD’s (after [33,58])

Parameter Unit Si Ge InGaAs

Useful Wavelength Region nm 400-1150 800-1750 900-1700

Responsivity (R) AAV 80-130 3-30 5-20

Mean Gain Region — 100-500 50-200 10-40

Impact Ionization Ratio (k) — .02-.05 0.7-1.0 0.5-0.7

Dark Current (U) nA 0.1-1.0 50-1500 0.5-0.7

Rise Time (Tr) ns 0.1-1.0 0.4-0.7 1-3

Bandwidth GHz 0.2-1.0 0.4-0.7 1-3
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1.3 Response speed

Typically, there are four time constants involved in determining the response 

speed of avalanche photodiodes: (1) The depletion-layer transit time Ttr, (2) The RC time

constant Trc, (3). The diffusion time in the undepleted layer and (4) The avalanche

build up time Ta. The first three time constants strongly depend on the length of the

depletion region.

The transit time can be simply obtained as [34,35],

T =^-
‘r v.(

where Id is the length of the depletion layer and v, is the saturated drift velocity. Id 

depends on structures, and vs could be the saturated speed of an electron or hole.

The simplified equivalent circuit of an avalanche photodiode is given in the Figure 

1.4. The RC response time is given by [35-38],

^RC = +

where Rs is the diode series resistance, Rc is the load resistance, and C is the diode 

capacitance, which is the sum of the junction and package capacitance. For carefully 

designed devices, a small value of 10-20 Q can be typically obtained. The value of C is

determined from the diode capacitance, which depends on the diode area, the length of 

the depletion layer and the package used.
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1(0)

J-------------
Rs -L

_ Rc
c3 "" C

Figure 1.4 Simplified equivalent circuit diagram of an avalanche photodiode

The diffusion time in the undepleted layer Td has been shown to be [33,58],

r = -$- 
D (2.4£>)

where l0 is the distance of the carriers diffused in the undepleted region and D is the

minority carrier diffusion constant. In well-designed devices, Td is usually much less than

the other three time constants.

The multiplication process is not instantaneous. The avalanche build-up time Ta

depends on the number of secondary carrier generation and is sometimes roughly 

expressed proportional to the mean multiplication gain <G> as [31,33,34],

Ta = <G> Nkx

where N is a number varying slowly from 1/3 to 2 and T is the avalanche region transit

time. This time constant depends strongly on the impact ionization coefficient ratio. If 

there is a large difference in these impact ionization coefficients, the time constant will be

small.
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Because the multiplication processes in the multiplication region is random. The 

multiplication buildup time is also a random variable. The above equations are only used 

to roughly estimate the buildup time. Therefore, in order to more accurately describe the 

performance of the device, it is necessary to examine the impulse response function of

the detector, and to characterize the statistics of the impulse response function, such as

the mean, the variance, and the autocorrelation function. This is the topic of many recent 

papers [51,53,59] that are discussed here in later sections.

Generally speaking, the APD response characteristics at high multiplication gain 

are governed by Ta. On the other hand, the response speed at low multiplication gain is

limited by the other factors. At low multiplication gain, there is a trade-off between the 

response speed and the quantum efficiency. This is due to the fact that the response speed 

is improved by reducing the absorption layer results in the decrease the quantum

efficiency.

1.4 APD noise current

The total APD dark current consists of two components, Idu and Idm. Idu is the 

unmultiplied current, which is mainly due to the surface leakage current, whereas Idm is 

the bulk dark current experiencing the multiplication process. The total dark current can

be expressed as

Id = Idu + <G>Idm (1-4)

By the definition of the excess noise factor F, the mean square noise current due to the

dark current is given by

10



(1.5)

From the previous discussion, we can see that the smaller the k, the smaller the excess

noise factor. From the k values in the Table 1.1, we conclude that a Si APD has an

excellent low dark current noise density compared with Ge APD and GalnAs/InP APD,

which are usually used at longer (near infrared) wavelengths, whereas, Si APD’s are used

at short wavelengths.

In optical receiver applications, the photodetector is used with a low noise 

amplifier. The dark current noise power is given by,

(l-) = 2eIJ„Bl2+2eIJm{G')!FBI2 (1.6)

where B is the receiver bandwidth, and I2 is an integral parameter which depends on the 

input optical pulse shape. This expression was first derived by Personic [35,36]. For 

rectangular input pulse that fill the bit time slot of duration i/B, and assuming a raised 

cosine output pulse, I2 is about 0.55. More detailed information can be found in 

Personic’s original work [35,36],

Equation (1.6) shows that the contribution of the unmultiplied dark currents to 

the output noise is generally negligible in comparison with the noise currents with 

multiplication. For example, at <G>=20, and F~<G>in (typical of Ino.53Gao.47As/InP 

APD’s), the primary dark current is about 1 nA. After multiplication, it will reach to

nearly 2 pA. Thus, for most practical receivers, we can ignore all unmultiplied noise

sources of dark currents (e.g., detector surface currents, gate leakage, etc.) and consider

only the current that undergoes multiplication.
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CHAPTER II

APD RANDOM RESPONSE TIME

2.1 Impact ionization of carriers

The APD is a semiconductor device, which is normally operated in a strong reverse- 

biased manner in the p-n junction, which produce a depletion region of high electric field. 

Due to the thermal agitation and/or the presence of incident optical power, pairs of holes 

and electrons can be generated at various points within the diode (see Figure 2.1). These 

carriers drift toward opposite ends of the device under the influence of the applied 

electric field. When a carrier passes through the high-field depletion region. It gains 

sufficient energy to generate one or more new pairs of holes and electrons through a 

process called impact ionization in the depletion region. These new pairs can in turn 

generate additional pairs by the same mechanism. Carriers are collected at opposite ends 

of the diode. The likelihood that a carrier generates a new pair when passing through the 

high field region depends on the several factors, such as the type of carrier (hole or 

electron), the material of the region, and the reverse bias voltage. It can be assumed that 

impact ions produced are randomly located in the depletion region, and the numbers of 

ions are also randomly produced. Furthermore, we will neglect the space-charge effect. 

The gain and the response time associated with the random multiplication processes, are

therefore also random variables.

12



Figure 2.2 illustrates the case when holes do not contribute to the impact 

ionization, (i.e.,fc«l). A parent electron that enters the multiplication region is rapidly 

accelerated by the strong applied electric field. A series of impact ionizations occur 

resulting in five electrons generated from a single parent photoelectron (G=5). Figure 2.3

shows the case when k =1.0 where both electrons and holes contribute to the impact

ionization. Electrons moving to the right can cause impact ionization to produce a new 

pair of electron and hole. Both electron and hole can generate additional pairs.

hv

n i

E

Initial pair 
hole, electron

◄—OO->

Photon P+ P N+

I photo

Absorption region Multiplication region

Figure 2.1 Avalanche photodiode device structure

The general features of the gain process can be seen in the Figure 2.2. The

direction of the field is assumed to be as shown, so that electrons within the

multiplication region travel in the positive x direction and holes travel in the negative x

direction. Thus, the direction of current flow is in the same direction as the electric field.

13



The electron current increases with increasing x while the hole current decreases with

increasing x.

E field +
F---------------- ---- ----------------------1 W

Figure 2.2 Avalanche processes when only electrons can impact ionize
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E field w

Figure 2.3 Avalanche processes when both holes and electrons contribute in the impact ionizing
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2.2 Renewal theory for the random response time

In the Section 2.1, the focus is on the basis of the gain process. This process is a

random process, and the gain statistics has been extensively studied [30,31,35,39-45]. 

However, most of the work does not address the time dependence of the avalanching 

process. In order to analyse the performance of digital optical communication systems, 

knowledge of the temporal statistics of the impulse response function is required. Studies 

of the temporal response of the APD were limited to the mean value, its variance, and its 

auto-correlation function. Nagvi [46] provided an expression for the mean square 

avalanche current by including a frequency dependent factor based on McIntyre’s 

expression [28], Naqvi solved the transport equations for the mean current densities 

assuming stationary multiplication process. Walma and Hackam [47] provided a partial 

solution of the problem by considering only the arrival of electrons at the edge of the 

device. They did not determine the photocurrent response. The autocorrelation function 

of the impulse response was first determined by Matsuo et al [48,49]. The statistics of the 

random response time, which is finite for each ionization of the impulse response, and the 

relation between the random response time and the statistics of the impulse response

current is not clear [50-53], However, direct knowledge of the mean, variance, and the 

probability density function of the APD response time can be effectively used to obtain 

simple approximate expression for the statistics of the receiver photocurrent. In this 

chapter, the pdf of the random response time of APD’s is characterized using renewal 

equations. The pdf, and therefore the statistics of the response time are then numerically

16



computed from the renewal equations. Simple approximations for the statistics of the 

receiver impulse response function based on the pdf of the random response time will be 

discussed in the chapter IV.

left)

Figure 2.4: APD multiplication process with the electron and hole 
current responses
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Consider the multiplication region in the APD as shown in Figure 2.4 and 2.5, 

define I(t) as the photocurrent in the multiplication region. The random response time T 

is the time it takes until all the carriers exit the multiplication region. In other words, it is 

the time it takes until the photocurrent goes to zero. Mathematically, it can be expressed

as,

T = min{t:/(r) = 0}

For single carrier multiplication devices, T is bounded by the sum of the electron and

hole transit

times. That is,

w w 
T< — + —

Ve Vh

But for the double carrier multiplication APD’s, each realization of I(t) is of finite 

extent (assuming finite gain), but the duration of I(t) is random and cannot be bounded.

Let Fr(t)=P{T< t} denote the probability distribution function (PDF) of the

random response time T, and let Te(x) be the time when the APD response terminate if 

the multiplication is initiated by a single electron at location x, (see Figure 2.5). Finally, 

we let Fe(t,x)=P{Te(x)<t} be the PDF of the random variable Te(x). Clearly we have

FT(t)=Fe(t,O). If the first electron ionization occurs at x+^, then the response will die out

only if the response resulting from the offspring two electrons and hole terminate. Since a 

parent electron at x must travel a distance w-x before exiting the multiplication region.

Therefore, Fe(t,x)=l for t > (w-x)/ve, where ve is the saturate velocity for electron.

Similarly, the PDF for the random variable Th(x) can be expressed as Fh(t,x)=P{Th(x)<

18



t}, and a hole necessary travels a distance x before existing the multiplication region. 

Fh(t,x)=l for t > x/vh, where Vh is the saturation velocity for hole. Using the techniques 

from the branching theory [54-56], it can be shown that the distribution function Fe(t,x) 

and Fh(t,x) are related by the following renewal integral equations,

w—x

fty,x)=[/"'""+ J^y-i.x+^F.y-^+^-^f] t/y-^) (2.1)
0

x

= [/’ + ]F^l-^.x-^F,(t-^,x-(2.2)
0

where U(.) is the unit step function.

Figure 2.5: Multiplication process in the multiplication region, an electron at 
x initiates the multiplication process producing two offspring

electrons and one hole at location x+£

To obtain Eq.(2.1) and (2.2), we first assume a parent electron at position x, then 

consider the condition on the location of its 1st ionization. If no ionizing take place, then

P{Te(x) <t} =
other

19



On the other hand, if the 1st ionization occurs at £ > x, then in order for Te(x) to be 

less than t, the response times Tei(Q, Te2(0 and Th(£), correspond to the offsprings at £ 

must all expire within at time t - (£-x)/ve. By using the independence of Tei (Q, Te2<X) and 

Th(0, and averaging over all possible £ in [x,w], we obtain (2.1).

In Equation (2.1), the first part of the right hand side is the probability that the 

parent electron at x is transported to the end of the multiplication region without ionizing. 

The integral represents the event that the parent electron impacts ionization during its 

travel from x to w. Similar interpretation is associated with hole in the Equation (2.2).

For the convenience of computation, we set,

. X . c, J , t
X =— , f =— , and t = —

W W Te

where xe = w/ve, is the electron transit time through the multiplication region.

The purpose of changing variables is to normalize all variables to dimensionless 

quantities. After normalization, the renewal equations (2.1) and (2.2) can be rewritten as,

X

(2-3)
0

1-x
W,x) = + J Fe\t - £,x + £)Fh{t -£,x + £)he(£>d£] U[t - (1 - x)] (2.4)

o

where = a £
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The distribution function Fe(x,t) and Fh(x,t) can be then numerically solved from renewal 

equations by using an iteration method. Finally, the distribution function for the response

time can be found through the relation that,

FT(t) = Fe(t,O)

2.3 Numerical solution of the renewal equations

The numerical solutions to the distribution function of Fe(x,t) and Fh(x,t) can be

implemented using the Picard iteration method. It has been demonstrated [51,57] that 

Picard iteration method is a simple and efficient numerical recipe, although it may not be 

the best one. The general procedure is illustrated in the Figure (2.6). Initially, we set 

Fe(t,x) and Fh(t,x) both equal to 0 for any t e [0,1] and x e [0,1], then we start the

iteration as follow.

Let us write the renewal equations as,

F,(t,x)=L,(F„Fh\l,x) 

Fh(t,x)= L„(F,,Fh\t,x)

where Le and Lh are operators that map two functions of two variables to a function of 

two variables. In our case, the operators are the exponential term plus integrals. The

iterations can then be expressed as,

Fr'(t,x)=L,(F:,F;\t,x) 

F;"(t,x)=l„(f; ,F;\t,x)
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After the initial values are set, the iteration procedure can be continued until the pre-set 

convergence criterion is met. That is,

MAx[Fen+1(t,x)-Fen(t,x)]<£ 

and MAx[Fhn+l(t,x)-Fhn(f,x)]<£

where e is the pre-set tolerance, and te [0,1], xe [0,1].

It can be shown [56,57] using elementary analysis that the sequence of functions 

{F/(f’*)}~o and (*’ x)E=c is Cauchy in the supemum norm metric, hence there exist

limit functions to which Fe(t,x) and Fh(t,x) convergence uniformly.

2.4 Results and Discussion

The renewal theory discussed in the Chapter 2 is applied generality to both a single 

carrier and a double carrier APD’s. For simplicity, without lose of generosity, we assume 

that the saturation velocity of electrons and holes are the same, that is, ve = vh. In a real 

APD structure, many factors will affect the APD response time [58], As we discussed in 

the chapter 2, in a well-designed device, the transit time effect and the avalanche build-up 

time will dominate. However, for a specific device, the transit time in the depletion layer 

is relatively unchanged, and also it is much less than avalanche build-up time for 

avalanche photodiode operating at high gain. For the above reason, only the effect of the 

avalanche build up time is considered in this thesis. In our computations of the PDF of 

the response time, the parameters given in
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Renewal equations

Figure 2.6 : Picard iteration procedure
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Table 2.1: The parameter aw used in the computation of the response time for 
various combinations of Given <G> and k,

k <G>=10 <G>=10 <G>=20 <G>=40

0.1 1.845 2.146 2.333

0.2 1.591 1.784 1.893

0.3 1.420 1.562 1.639

0.4 1.294 1.407 1.466

0.5 1.196 1.289 1.337

0.6 1.116 1.195 1.236

0.7 1.049 1.118 1.153

0.8 0.992 1.054 1.085

0.9 0.943 0.998 1.026

Table 2.1 are used. Given a mean gain and an ionization coefficient ratio k, a and k can

then be computed [33],

Figure (2.7) shows the distribution function of random response time T for single 

carrier multiplication devices. As we pointed out in the previous section, for a single 

carrier multiplication devices, T is bounded by the sum of the electron and hole transit 

time. For the same electron and hole saturation speed, the response time T is less than

2xe- From Fig. (2.7), it is clear that the distribution function starts from a small value at

xe, and increases rapidly to 1 at T = 2xe. For the probability density function of a single

carrier device, because the distribution function is discontinuous at T = xe, the 8 function 
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appears in the probability density function. Fig.(2.8a) shows the distribution function of T 

as a function of response time T for the different impact ionization ratios, k = 0.1, 0.5,

1.0 and for fixed mean gain <G> = 10. Fig.(2.8b) and (2.8c) are similar to (2.8a), except 

that for the mean gain is <G> = 20 and 40, respectively.

To analyze the tail of the distribution function of the random response time T in 

detail, we plotted the probability density function of T as a function of the time t in the 

Fig. (2.9a), (2.9b), and (2.9c). As shown in the Figures, for T>5xe, the pdf of T is almost

exponential. This observation serves as a basic assumption in the next Chapter to 

analytically compute the decay rate of the pdf of the random response time T. Figures 

(2.10) and (2.11) show the mean response time <T> and variance Var(T) as a function of 

the impact ionization ratio k for different mean gain. These results are in consistent with 

the results reported in the literature [51,53]. However, the theory developed in [51,53] is 

only suitable to calculate the statistics of the impulse response function, and not the 

statistics of the random response time itself. The statistics
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Figure 2.7. Probability distribution function as a function of normalized time 
for single carrier multiplication APD (k=0). The distribution function is 
zero prior to the transit time, and terminates at 2 times the transition time
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Figure 2.8. Probability distribution function of the random response time T as a 
function of the normalized time t, for an APD with ve = Vh. (a) The value of

aw is chosen so that the mean gain is 10. The ionization coefficient 
ratio is set to 0.1, 0.5 and 1.0
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Figure 2.8 (b). The value of aw is chosen so that the mean gain is 20. The 
ionization coefficient ratio is set to 0.1, 0.5 and 1.0.
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Figure 2.8 (c). The value of aw is chosen so that the mean gain is 40. The 
ionization coefficient ratio is set to 0.1, 0.5 and 1.0.

29



Pr
ob

ab
ilit

y 
De

ns
ity

 F
un

ct
io

n

Figure 2.9 (a). Probability density function of the random response time 
T as a function of the normalized time t, for an APD with 
ve = Vh. The value of aw is chosen so that the mean gain is 
40. The ionization coefficient ratio is set to 0.1,0.5 and 1.0.
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Figure 2.9 (b). The value of aw is chosen so that the mean gain is 20. The 
ionization coefficient ratio is set to 0.1, 0.5 and 1.0.
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Figure 2.9 (c). The value of aw is chosen so that the mean gain is 40. The 
ionization coefficient ratio is set to 0.1, 0.5 and 1.0.
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Figure 2.10. Mean of the response time <T> as a function of impact ionization 
coefficient ratio k for mean gain of 10, 20, and 40.
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Figure 2.11. Variance of the response time Var(T) as a function of impact 

ionization coefficient ratio for mean gain of 10, 20, and 40.
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of the random response time tells us exactly how the mean and variance of the random 

response time increase with the mean gain and the impact ionization ratio k. In Figures 

(2.14) and (2.15), it is shown that for high gain APD’s, both the mean and the variance

increase greatly. For high rate digital optical communication systems, these effects will 

increase the effect of intersymbol interference and therefore limit the bit-error-rate.
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CHAPTER m

EXPONENTIAL TAIL OF THE PROBABILITY DENSITY 
FUNCTION OF THE RESPONSE TIME

3.1 Analytical approximation to the exponential tail of the probability density function of

the response time

In Chapter II we observe that the PDF’s of the electrons and holes, Fe(t,x) and 

Fh(t,x), respectively, converge to unity exponentially fast. Let the exponential rates for 

electron and hole be y. The PDF of the electron and hole can then be assumed to be,

Fe (t, x) = 1 - A(x)exp(- x) 

^* (*,*)= l-£(*)exp(-y)

(3.1)

(3.2)

where A(x) and B(x) are constants with respect to time.

At the edge of the multiplication region, that is at x = 1, the PDF of Te(l) must be 1

whatever the time is, since Te(0)=0. Therefore, Fe(t,l)=l. Similarly for hole, Fh(t,O)=l at

x=0. Inserting these two boundary conditions into equations (3.1) and (3.2), we obtain,

A(l) = 0

and B(0) = 0

Inserting equations (3.1) and (3.2) into the normalized master renewal equations, and

neglecting the high order terms, we obtain,
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(3.3)

1-x
A(x) = J 2aA(x + f)exp[(y - a)^]c/£

o
1-x

+ a Jb(x + ^) ex p[(/-a)d^
o

Now use the change of the variable, T|= x+£,, obtain,

i
A(x) = J 2aA(z/)exp[- (/ - afy -

, % (3.4)
ex pKz-oOfo-*)]^

X

By differentiating both sides of Equation (3.4) with respective to x, and applying the 

boundary conditions, we obtain,

A’(x) = -aA(x)-aB(x) -jA(x) (3.5)

We can apply the same procedure and obtain,

5’(x) = ()B(x) + /5A(x) + j-B(x) (3.6)

For convenience, define the vector,

£>(%) =
A(x)
B(x)

Then Equation (3.5) and (3.6) can be expressed as,

D\x) = MD(x) (3.7)
where the matrix M is given by,

-y-a -a 
M = n aL £+/J

The differential equation (3.7) generally has solutions A(x) and B(x) of the following

form,
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A(x) = C| exp(r,x) + c2 exp(r2x) (3.8)

B(x) = dx exp(r,x) + d2 exp(r2x) (3.9)

By applying the boundary conditions to Equations (3.8) and (3.9), we obtain,

c, exp(r,) + c2 exp(r2) = 0 (3.10)

and d{ + d2 = 0 , (3.11)

By inserting the general solutions into equation (3.7), we obtain, 

c,r, = -2c, a- d}a- (y'-d)c,
(3.12)

c2r2 - -2c2a - d2a -{y - o.)c2 
and

(3.13)
~ ^2p + ^2p + ^2?

From Equation (3.12) and (3.13), we derive the following linear equation in matrix form, 
and the

relationship between Ci and C2 is given by,

r, + a + y
^*2 — 1 r2 4- a + /

(3.14)

and

r, + a + 7 a M O'

~P t\-P-7] 0
(3.15)

The homogeneous linear equation (3.15) has a non-trivial solutions if and only if the

determinant of the coefficients matrix is zero, that is,
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(3.16)

This condition leads to the non-linear characteristic equation, 

r2+ r(a+P)-y (a+p+y) = 0 (3.17)

Generally, this equation has two solutions ri and r2 as functions of a, (3 and y.

On the other hand, inserting equation (3.14) into equation (3.10) and (3.11), we

obtain the characteristic equation for y,

f(y) = (r2 + a + y) exp(n) - (n + a + y) exp(r2) (3.18)

Therefore from this equation, the decay rate of the pdf of the random response time can

be solved from the root of this non-linear equation.

3.2 Analytical results and discussion

Given the mean gain <G> and the impact ionization ratio k, the ionization

coefficients a and P can be obtained from Eq.(2.3). Therefore rj and r2 can be solved

from Equation (3.17) for each value of y. Then the decay rate y can be solved from the

root of the characteristic equation (3.18). Fig.(3.1) shows the decay rate y as a function of

the impact ionization ratio k, for the fixed mean gain <G>=10, 20 and 40. Figure (3.2) 

shows the decay rate as a function of mean gain for the several fixed impact ionization 

ratios, k = 0.2, 0.4, 0.6, 0.8 and 1.0. As shown in Fig. (3.1) and (3.2), for the fixed 

impact ionization ratio, the decay rate increases as mean gain decreases and decreases as 

the impact ionization ratio increases for constant mean gain. The behaviour of the decay 

rate as functions of mean gain and impact ionization ratio is important due to following.
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First, the decay rate is critical in calculating the statistics of the mean response time, e.g., 

the mean response time, variance of the response time, etc., because even if the absolute 

value of the pdf tail of the random response time is very small, the statistics of the 

random response time may still be greatly influenced by the decay rate if the decay rate is 

small. Second, precise numerical calculation of the decay rate is very difficult, especially 

in the region of the large mean gain and high impact ionization ratio. This is because if

Figure 3.1: Analytical decay rate y of the pdf of the random response time T 
as a function of impact ionization coefficient ratio k.
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1.6

Figure 3.2: Analytical decay rate y of the pdf of the random response time T 
as a function of mean gain <G>.

the impact ionization ratio and the mean gain are large, then there are necessary many 

carrier ionizations involved in the multiplication region. It will take a long time for all the 

electrons and holes to exit the multiplication region. Therefore, the tail of the pdf of the 

mean response time will decay at slow rate. An accurate numerical solution will require a 

large number of iterations.

3.3 Comparison with the numerical results

The approximate analytical results are compared with the numerical results

obtained by solving the renewal equations numerically. The comparison results are 

shown in the Figure (3.3). Which shows the decay rate y as a function of impact
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ionization rate k for fixed mean gain. Numerical results are in good agreement with the 

approximate analytical results, except the region of large mean gain and high ionization, 

as expected.

Figure 3.3: Comparison between the numerical and analytical decay rate y 
of the probability density function of the random response time T.

As discussed in the Section 3.1, the decay in the density function of T is 

exponential only when t is large. This condition usually can be met for t excess of 6 times 

the transition time Te for small mean gain.
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CHAPTER IV

APPLICATIONS

In the Chapter II, we have derived the renewal equations for the distribution 

function of APD random response time. Numerical solutions to the renewal equations 

and a discussion of results were presented. In the chapter III analytical solutions to the 

decay rate of the pdf of the random response time were obtained. The analytical solutions 

are important since it gives us the knowledge of the behaviour of the mean response time, 

and also will help making conclusions on the maximum allowable data rate to keep the 

effect of intersymbol interference minimal. Most importantly, the method presented in 

this thesis gives us a simple way to calculate the statistics of the impulse response

function to be considered next.

The statistics of the impulse response function, including the mean, standard 

deviation, and characteristic function (all as functions of time) were previously

determined by Hayat [51]. The approach he used is based on the renewal equations for

the number of carriers of one kind, (i.e., electron or hole), at time t after the initiation of 

the multiplication process by a single carrier of a certain kind at an arbitrary location 

within the multiplication region. Kahram [33] on the other hand, derived the

autocorrelation function of the impulse response of a double carrier multiplication APD,
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based on a discrete stochastic numerical model. Both methods require extensive

computing.

In this chapter, we present a simple approximation to calculate the mean, the 

standard deviation, and autocorrelation function of the random impulse response. Our 

method is based on simple impulse response function models and the pdf of the random 

response time.

4.1 Impulse response function

We assume the random impulse response function as following three simple 

models. The impulse response function is modelled in terms of random response time T,

and electron transition time Te.

(1) Rectangular response model

(4.1)

This is a simple response model. For which we assume that a constant response during 

the duration of the random response time T (see Fig.(4.2)).

(2) Triangle response model

H(r) = (4.2)2G 2G
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------------------ >
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Figure 4.2. Rectangular response model

In this rectangular model, we over emphasis the response at t>re. The triangle model is

close to the real impulse response function. Of course, we can use more precise random 

impulse response function model to get more correct results. In this paper, we only use 

these simple models to get some intuitive results. Some sophisticated models can be 

adopted only by slightly adjusting the computation.

Figure 4.3: Triangle Response Model
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4.2 Statistics of the random impulse response function

Based on the pdf of the random response time T and the simple random response

models described above, the statistics of the impulse response function can then simply

be determined.

Let h(t) be the mean of the random process H(t), i.e., h(t) = E[H(t)], and let Var(H(t))

denote the variance of H(t).

It can be shown that for the rectangle model, the mean and the variance of the H(t)

are,

fl ft Ch(t)=<G> J-Rec --- /,(r)dr 
0 T

00 1 1 1 =<G> \~fMdr =<G>E[-\ =<G>E[—\

00 1 J
E[H2(/)] =<G>2 j —fr^dT =< G >2 £[-7]

n i

(4.3)

(4.4)

and the variance is,

Var[//(t)]=<G>2 ' 1 1 c r 1T1
-<G>2 E —Lr J I LtJJ (4.5)

For the triangle response model, the mean is following,

for 0 < t < xe
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h(t) = ■j—fT(r)dr

2<G>t 1
-7—£17]

for Te < t < 00

/z(0 = 2<G> J t 1
+-

(r-r.) r-r,

and the variance can be calculated from the second moment of H(t), that is,

(4.6)

E[H(t)2] =
(2<G>t} 2

r 11
El ) [t1 J 0 < t < Te

-|2

E[H(t)2] = (2<G>)2]
r- T,

Te < t < T

(4.7)
therefore,

VM#(f)] =

VariH(t)] = (2<G>y
T~T

for 0 < t < Te

-2
00

fT(r)dr- J
0 T-T (r-re)t

for Te<t<T

/r(r)Jr

(4.8)

f 2 < G >

\ ‘'e J

{E[-^]-E[^2}

121

4.3 Signal to noise ratio of the impulse response function

Knowledge of the mean and the variance of the detector impulse response function

are not sufficient to evaluate the bit-error-rate in a digital optical communication system 

47



[59,60], Since the response to a random sequence of photons is the sum of the electrical 

pulses generated by each of the photon. The properties of the photoelectric current are 

determined not only by the mean and variance of the impulse response function, but also

the autocorrelation function.

Once we have computed the variance and the mean of impulse response, the signal to 
noise

ratio of the current are simple found to be,

SNR =
Var[H(t)]

(4.11)

48



CHAPTER V

CONCLUSIONS

Renewal equations are developed to calculate the probability distribution function 

of the random response time of a double-carrier multiplication APD, and used to 

determine the statistics of the random response time.

The decay rate of pdf of the random response time is a key factor to calculate the 

statistics of the random response time. We provide in this thesis an analytical 

approximation to this rate. Our numerical results are in good agreement with the 

analytical results. The computed statistics of the APD random response time show that 

the mean response time increases with impact ionization ratio and the mean gain. The 

variance of the response time increases slowly with the impact ionization ratio for small 

mean gain, but increase more significantly for high mean gains. Also, from the computed 

probability density function of the response times, it is found that the decay rate of the 

density function decreases as the impact ionization ratio and the mean gain increase. Our 

computation results clearly show the general random response time statistics of different 

types of APD’s.

Although, Si and Ga APD’s can be operated at very high gain, in the practical point

of view, APD’s in communication receivers are usually operated in an optimum
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condition to minimize the noise [33]. For the low value of the impact ionization ratio k, 

(representative of a short-wavelength APD’s such as Si APD’s), the optimum gain is near 

50 for k = 0.01. Whereas for the high value of k, which is more representative of a long 

wavelength device, the optimum gain is much low, the mean gain is about 10 for k =0.25. 

From our results, for the low k devices, the mean and variance of the random response

time is lower than these of the high k devices. The high variance means that long tail of 

the random response time. This long tail will degrade the performance of the optical 

communication systems because of the increasing intersymbol interference. Therefore, 

APD receivers with high value of k must be operated at the low gain region to get best 

performance. Otherwise long response time and high response time variance will increase 

the intersymbol interference, resulting in degrading the system performance. On the other 

hand, for the APD receivers with low value of k, they can be operated at high gain region. 

Our results in this thesis generally consistent with the rules of thumb used in optimal 

receiver design [33,36,60], and can be used as an important guildline in the optical

receiver design.

The method provided in this thesis is a general one. It can be easily extended to 

incorporate the effect of dead space by incorporating the ionization probability, which is 

a function of position and electric field, into the renewal equations. By using the 

ionization probability, the nonlocalized ionization processes can also be readily

associated to our model.

From the computational point of view, it is important to note that the iteration 

method is a simple and efficient numerical recipe. The major part involved is just nested
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loops. It can simply be implemented in C++. It is efficient, because using a SUN SPARC 

workstation, the iteration method solves the integral equations of the electron and hole

distribution function of the random response time in a average of a couple of dozen

iterations within a tolerance of 10e-14. Of course, the algorithm may be improved to

increase speed and reduce memory requirement.
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