1,075 research outputs found

    A Semi-Supervised Two-Stage Approach to Learning from Noisy Labels

    Full text link
    The recent success of deep neural networks is powered in part by large-scale well-labeled training data. However, it is a daunting task to laboriously annotate an ImageNet-like dateset. On the contrary, it is fairly convenient, fast, and cheap to collect training images from the Web along with their noisy labels. This signifies the need of alternative approaches to training deep neural networks using such noisy labels. Existing methods tackling this problem either try to identify and correct the wrong labels or reweigh the data terms in the loss function according to the inferred noisy rates. Both strategies inevitably incur errors for some of the data points. In this paper, we contend that it is actually better to ignore the labels of some of the data points than to keep them if the labels are incorrect, especially when the noisy rate is high. After all, the wrong labels could mislead a neural network to a bad local optimum. We suggest a two-stage framework for the learning from noisy labels. In the first stage, we identify a small portion of images from the noisy training set of which the labels are correct with a high probability. The noisy labels of the other images are ignored. In the second stage, we train a deep neural network in a semi-supervised manner. This framework effectively takes advantage of the whole training set and yet only a portion of its labels that are most likely correct. Experiments on three datasets verify the effectiveness of our approach especially when the noisy rate is high

    HetSeq: Distributed GPU Training on Heterogeneous Infrastructure

    Full text link
    Modern deep learning systems like PyTorch and Tensorflow are able to train enormous models with billions (or trillions) of parameters on a distributed infrastructure. These systems require that the internal nodes have the same memory capacity and compute performance. Unfortunately, most organizations, especially universities, have a piecemeal approach to purchasing computer systems resulting in a heterogeneous infrastructure, which cannot be used to compute large models. The present work describes HetSeq, a software package adapted from the popular PyTorch package that provides the capability to train large neural network models on heterogeneous infrastructure. Experiments with transformer translation and BERT language model shows that HetSeq scales over heterogeneous systems. HetSeq can be easily extended to other models like image classification. Package with supported document is publicly available at https://github.com/yifding/hetseq.Comment: 7 pages, 3 tables, 2 figure

    Multi-modal Domain Adaptation for REG via Relation Transfer

    Full text link
    Domain adaptation, which aims to transfer knowledge between domains, has been well studied in many areas such as image classification and object detection. However, for multi-modal tasks, conventional approaches rely on large-scale pre-training. But due to the difficulty of acquiring multi-modal data, large-scale pre-training is often impractical. Therefore, domain adaptation, which can efficiently utilize the knowledge from different datasets (domains), is crucial for multi-modal tasks. In this paper, we focus on the Referring Expression Grounding (REG) task, which is to localize an image region described by a natural language expression. Specifically, we propose a novel approach to effectively transfer multi-modal knowledge through a specially relation-tailored approach for the REG problem. Our approach tackles the multi-modal domain adaptation problem by simultaneously enriching inter-domain relations and transferring relations between domains. Experiments show that our proposed approach significantly improves the transferability of multi-modal domains and enhances adaptation performance in the REG problem

    CiGNN: A Causality-informed and Graph Neural Network Based Framework for Cuffless Continuous Blood Pressure Estimation:A Causality-informed and Graph Neural Network Based Framework for Cuffless Continuous Blood Pressure Estimation

    Get PDF
    Causality holds profound potentials to dissipate confusion and improve accuracy in cuffless continuous blood pressure (BP) estimation, an area often neglected in current research. In this study, we propose a two-stage framework, CiGNN, that seamlessly integrates causality and graph neural network (GNN) for cuffless continuous BP estimation. The first stage concentrates on the generation of a causal graph between BP and wearable features from the the perspective of causal inference, so as to identify features that are causally related to BP variations. This stage is pivotal for the identification of novel causal features from the causal graph beyond pulse transit time (PTT). We found these causal features empower better tracking in BP changes compared to PTT. For the second stage, a spatio-temporal GNN (STGNN) is utilized to learn from the causal graph obtained from the first stage. The STGNN can exploit both the spatial information within the causal graph and temporal information from beat-by-beat cardiac signals for refined cuffless continuous BP estimation. We evaluated the proposed method with three datasets that include 305 subjects (102 hypertensive patients) with age ranging from 20-90 and BP at different levels, with the continuous Finapres BP as references. The mean absolute difference (MAD) for estimated systolic blood pressure (SBP) and diastolic blood pressure (DBP) were 3.77 mmHg and 2.52 mmHg, respectively, which outperformed comparison methods. In all cases including subjects with different age groups, while doing various maneuvers that induces BP changes at different levels and with or without hypertension, the proposed CiGNN method demonstrates superior performance for cuffless continuous BP estimation. These findings suggest that the proposed CiGNN is a promising approach in elucidating the causal mechanisms of cuffless BP estimation and can substantially enhance the precision of BP measurement

    A WRF-UCM-SOLWEIG framework of 10m resolution to quantify the intra-day impact of urban features on thermal comfort

    Full text link
    City-scale outdoor thermal comfort diagnostics are essential for understanding actual heat stress. However, previous research primarily focused on the street scale. Here, we present the WRF-UCM-SOLWEIG framework to achieve fine-grained thermal comfort mapping at the city scale. The background climate condition affecting thermal comfort is simulated by the Weather Research and Forecasting (WRF) model coupled with the urban canopy model (UCM) at a local-scale (500m). The most dominant factor, mean radiant temperature, is simulated using the Solar and Longwave Environmental Irradiance Geometry (SOLWEIG) model at the micro-scale (10m). The Universal Thermal Climate Index (UTCI) is calculated based on the mean radiant temperature and local climate parameters. The influence of different ground surface materials, buildings, and tree canopies is simulated in the SOLWEIG model using integrated urban morphological data. We applied this proposed framework to the city of Guangzhou, China, and investigated the intra-day variation in the impact of urban morphology during a heat wave period. Through statistical analysis, we found that the elevation in UTCI is primarily attributed to the increase in the fraction of impervious surface (ISF) during daytime, with a maximum correlation coefficient of 0.80. Tree canopy cover has a persistent cooling effect during the day. Implementing 40% of tree cover can reduce the daytime UTCI by 1.5 to 2.0 K. At nighttime, all urban features have a negligible contribution to outdoor thermal comfort. Overall, the established framework provides essential input data and references for studies and urban planners in the practice of urban (micro)climate diagnostics and planning

    On Finding an Equivalent Force to Mimic the Multilayer Ceramic Capacitor Vibration

    Get PDF
    The Multilayer Ceramic Capacitor (MLCC) Can Vibrate Due to the Piezoelectric Effect When There is AC Noise on the Power Rail. the Vibration of the Capacitor Will Generate a Force on the PCB and Thus Cause the PCB Vibration and Audible Problems May Occur. the Work in This Paper Finds an Equivalent Force with Similar Behavior to the MLCC-Generated Force. the Force is Controllable and Knowable and Thus Can Mimic the Capacitor Vibration on the PCB
    • …
    corecore