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Abstract— Causality holds profound potentials to dissi-
pate confusion and improve accuracy in cuffless contin-
uous blood pressure (BP) estimation, an area often ne-
glected in current research. In this study, we propose a
two-stage framework, CiGNN, that seamlessly integrates
causality and graph neural network (GNN) for cuffless con-
tinuous BP estimation. The first stage concentrates on the
generation of a causal graph between BP and wearable
features from the the perspective of causal inference, so
as to identify features that are causally related to BP vari-
ations. This stage is pivotal for the identification of novel
causal features from the causal graph beyond pulse transit
time (PTT). We found these causal features empower better
tracking in BP changes compared to PTT. For the second
stage, a spatio-temporal GNN (STGNN) is utilized to learn
from the causal graph obtained from the first stage. The
STGNN can exploit both the spatial information within the
causal graph and temporal information from beat-by-beat
cardiac signals for refined cuffless continuous BP estima-
tion. We evaluated the proposed method with three datasets
that include 305 subjects (102 hypertensive patients) with
age ranging from 20-90 and BP at different levels, with the
continuous Finapres BP as references. The mean absolute
difference (MAD) for estimated systolic blood pressure
(SBP) and diastolic blood pressure (DBP) were 3.77 mmHg
and 2.52 mmHg, respectively, which outperformed compar-
ison methods. In all cases including subjects with different
age groups, while doing various maneuvers that induces
BP changes at different levels and with or without hyperten-
sion, the proposed CiGNN method demonstrates superior
performance for cuffless continuous BP estimation. These
findings suggest that the proposed CiGNN is a promising
approach in elucidating the causal mechanisms of cuffless
BP estimation and can substantially enhance the precision
of BP measurement.

Index Terms— Causality, spatio-temporal graph neural
network, cuffless continuous blood pressure, amplitude
alteration, pulse transit time
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I. INTRODUCTION

ACCORDING to the World Health Organization (WHO),
approximately 1.13 billion individuals worldwide suffer

from hypertension, with this an expected increase to 1.5
billion by 2025 [1]. Hypertension, or high blood pressure, is
a prominent risk factor for cardiovascular diseases, including
heart disease and stroke, which are leading causes of death
globally [2]. The prevalence of hypertension would further
increase the existing burdens of dementia and disability world-
wide [3]. Therefore, effective prevention and management of
hypertension are crucial for improving global health outcomes.

Continuous BP measurement has the potential to provide
rich information for the diagnosis and prevention of hyper-
tension [4]. By monitoring BP continuously, we can obtain
a more comprehensive understanding of a patient’s BP over
time, as the patterns and trends in BP can indicate the need
for treatment or adjustments in current treatment plans. In
addition, continuous BP monitoring has an advantage over
conventional intermittent BP measurement, because BP may
be influenced by factors such as stress, physical activity, and
medication adherence. For example, continuous BP measure-
ment can overcome the clinical ”white coat effect” - the
phenomenon of elevated BP readings in a clinical setting -
and provides more accurate and reliable readings [5].

Cuffless continuous BP measurement enabled by wearable
physiological sensing has emerged as a promising approach
for its advantage of being noninvasive, its ease of use, and
continuous nature [6]. With BP changes-related features ex-
tracted from wearable cardiac signals, such as electrocardio-
gram (ECG) and photoplethysmogram (PPG), models can
be developed to map the features to BP so as to achieve
an indirect estimation. Cuffless BP estimation models can
be broadly classified into two categories: knowledge-driven
model and data-driven model.

The knowledge-driven models rely on expert knowledge of
the cardiovascular system. For instance, Chen et al. developed
a physiological model for cuffless BP estimation based on
pulse transit time (PTT) and the Moens-Korteweg (M-K) equa-
tion [7]. Ding et al. built a more comprehensive physiological
model that considers M-K equation and Windkess model with
the combination of PTT and PPG Intensity Ratio (PIR) [8].
However, these mechanism models usually work with underly-
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ing assumptions that may not be true. Taking the M-K equation
for example, it assumes that the artery wall is isotropic and
experiences isovolumetric change with pulse pressure, which
is not the case in human beings. These impractical assumptions
can lead to inaccuracies in BP estimation [9].

Data-driven models, on the other hand, involve learning the
mapping function from BP-related information to BP from
data [10]. For example, Miao et al. [11] employed deep
learning module, such as ResNet and long short-term memory
(LSTM) models, to estimate cuffless BP from PPG signal.
Tanveer et al. proposed an artificial neural network integrated
with the LSTM model to estimate cuffless BP from both ECG
and PPG signals [12]. Though advances in machine learning
(ML) techniques provide new inspirations for cuffless BP
estimation, the limitations of ML, such as the generalization
issue, also hinder the development of data-driven methods for
further clinical implementation. Data-driven methods depend
on large amounts of high-quality data, which could be difficult
and costly to acquire. Their performance can also be affected
by confounding factors such as motion artifacts and envi-
ronmental noise. Moreover, the black-box nature of ML can
make it challenging to interpret the underlying physiological
mechanisms and identify potential sources of inaccuracy [13].

The key to accurate continuous cuffless BP estimation
includes the wearable features/information that have causal
association with BP changes and the model that can relate
the appropriate features/information with BP. However, most
of the current studies that focus on either knowledge-driven or
data-driven methods overlook the causal relationships between
wearable features and BP changes, and the underlying causes
or effects of BP changes have rarely been identified. Causality
has the potential to improve the interpretability, robustness,
and generalizability of cuffless BP estimation methods [14].
Further, it can help identify the underlying mechanisms for
cuffless BP measurement, allowing for more accurate predic-
tions [15].

Pearl has put forward the theory of Bayesian networks and
causal inference using causal graphs to describe the causal
relationships between multi-variables [16]. Intuitively in the
causal graph, each node represents a random variable and
the directed edges between nodes reveal the data genera-
tion process or the relationship of cause and effect between
nodes. The problem of inferring causal relationships from
purely observed data has drawn significant attention in recent
years [17]. Common methods developed for causal inference
includes constraint-based algorithms, score-based algorithms
and Functional Causal Models (FCM) based algorithms [18].

Constraint-based algorithm infers the causal graph by im-
posing conditional independence constraints among the vari-
ables, and the algorithm is computationally efficient and able
to handle large datasets [19]. However, it supposes that the data
satisfy the faithfulness assumption, which may not always be
true in practice. Score-based algorithm searches for the causal
graph that maximizes a score based on the likelihood of the
observed data. It does not rely on the faithfulness assumption
but can be computationally expensive [20]. FCM-based algo-
rithm, assuming independent non-Gaussian noise across nodes
in the causal graph, utilizes independent components analysis

(ICA) to recover the causal relation [21].
In our previous work, we identified the causal graph be-

tween wearable physiological features and BP with constraint-
based algorithm [14]. However, due to the inherent limitations
of the algorithm, the direction of some edges in the identified
graph could not explicitly be oriented, which results in the
only inference of a Markov equivalence class. In addition,
the study employed the knowledge of causal graphs to build
a cuffless BP estimation model based on time-lagged causal
links [22]. Nevertheless, the time-lagged causal links only
represent guiding information about the topological structure
of the causal graph.

Graph neural network (GNN) is promising to address tasks
on graph-structured data, such as protein interaction prediction
and traffic flow forecasting [23]. GNN consists of a series of
neural network layers that are applied to the nodes and edges
of a graph, allowing for capturing the topological structure
of the graph and incorporating it into the learning process.
GNNs can learn how to propagate information across the
graph, allowing each node to take into account the features
and connections of its neighbouring nodes. As a result, it
enables the prediction of labels or values for the entire graph.
We propose a new framework for cuffless continuous BP
estimation based on GNN with the identified causal graph
as prior knowledge. With the topology of the causal graph
indicating the causal association between wearable features
and BP, we expect the GNN can derive a causal representation
for BP estimation.

This proposed causality-informed and graph neural network
based (CiGNN) framework for cuffless continuous BP estima-
tion consists of two stages. In stage I, we infer the causal graph
between extracted wearable features and BP with an improved
causal inference algorithm to address the issue of Markov
equivalence class. In stage II, a spatio-temporal graph neural
network (STGNN) model is developed to learn representations
from the causal graph. The STGNN model can capture both
the spatial and temporal information for cuffless continuous
BP estimation. The main contributions of this paper include:

• Development of an FCM-based algorithm that enables the
orientation and modification of the initial causal graph,
which can achieve better causal inference performance
than the constraint-based algorithm.

• A STGNN model is introduced to extract the spatial infor-
mation within the causal graph and temporal information
from the proceeding cardiac beats for cuffless continuous
BP estimation.

• The proposed two-stage CiGNN framework successfully
draws novel causal insights from wearable features that
can estimate cuffless continuous BP with satisfactory
performance.

II. METHODS

As illustrated in Fig. 1, CiGNN composes two main mod-
ules: causal inference module and a BP estimation module.
The function of the first module is to infer the causal graph
that relates BP with features extracted from wearable ECG
and PPG signals, following the majority strategy of causal
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Fig. 1. Overview of the proposed causality-informed and graph neural network based (CiGNN) framework for cuffless continuous BP estimation.
The wearable features are extracted initially from electrocardiogram (ECG) and photoplethysmogram (PPG). Subsequently, within the first stage, the
causality between BP and wearable features is inferred by fast causal inference (FCI) and causal generative network (CGNN) algorithms. Finally,
the second stage proposes the spatio-temporal graph neural network (STGNN) model, taking the causal graph sequence as its input for cuffless
continuous BP estimation.

TABLE I
CATEGORIZATION AND DEFINITION OF WEARABLE FEATURES.

Index Categorization Definition

1-10 Pulse Transit Time (PTT) Time difference between R peak in ECG and corresponding reference points in PPG

11-66 Time Duration (TD) Time duration between two reference points in PPG

67-76 Pulse Width (PW) Pulse width of PPG, measured at 50%, 60%, 70% amplitude or reference points

77-131 Amplitude Alteration (AA) Amplitude alteration between 2 reference points in PPG

132-150 Intensity of pulse (AI) Absolute intensity of PPG, dPPG and sdPPG at reference points

151-204 Area (AR) Area beneath the curve of PPG signal between 2 reference points

205-222 Relative Index (RI) Physiological meaningful ratio indices

inference. An initial causal graph is identified with the fast
causal inference (FCI) algorithm [24], where the direction of
some edges is not oriented. Subsequently, the causal generative
neural networks (CGNN) algorithm is utilized to orient and
modify the direction for the initial causal graph [25]. In
stage II, the directed causal graph serves as prior knowledge.
An STGNN model, taking the causal graph sequence as its
input, is proposed to capture both the spatial and temporal
information for cuffless continuous BP estimation.

A. Datasets and wearable features extraction
1) Datasets: In this study, we used one internal dataset

for the causal inference and two extra datasets to evaluate
the performance of the proposed CiGNN framework for BP
estimation. The internal dataset utilized in this study originates
from our preceding study [26], which involves 62 participants
(36 males). In the dataset, the average age is 26.7 ± 4.5 years
(ranging from 21 to 42 years). We collected wearable ECG and
PPG signals via the Biopac system in the experiment, and the
continuous BP measurement was synchronously recorded as a
reference using the Finpres device. All tests were conducted
with participants maintaining a seating position, where signals
were acquired for 10 minutes at a sampling rate of 1000 Hz.
The collective mean SBP is 114.0 ± 13.4 mmHg, accompanied
with the corresponding mean DBP of 67.0 ± 10.6 mmHg. We
used dataset collected from previous study [26], which has
been approved by relevant Institutional Ethics Committee.

In order to validate the robustness of our proposed method,
we evaluate its performance on two extra datasets: i) VitalDB
dataset [27] has been used as the first extra dataset to collect
PPG, ECG and the simultaneous invasive arterial BP (ABP).

Data of 205 patients belonging to different age and BP groups
have been collected and preprocessed. Table VI and VII
present brief statistical information of the selected patients. ii)
And for validating the CiGNN’s ability of tracking BP changes
due to external interventions, we employed the second extra
dataset [28] with a total of 38 subjects. This dataset consists
of the ECG, PPG and continuous BP with subjects under four
various maneuvers that can induce BP changes at different
levels. The maneuvers include sit (SIT), deep breathing (DB),
supine (SUP) and active standing (AS).

2) Wearable features extraction: To unravel the causal rela-
tionship between wearable features and BP variations within
the cardiovascular system, we extract a comprehensive set of
features from ECG and PPG signals, building upon our pre-
vious endeavors [29]. In total of two hundred and twenty-two
wearable features across 7 categories are extracted to facilitate
the subsequent causal inference. The detailed elucidation of
the 222 wearable features’ definitions and categorization are
presented in Table I.

Fig. 2 illustrates the identified reference points on ECG,
PPG, the first derivative of PPG (dPPG), and the second
derivative of PPG (sdPPG) signals. The corresponding
wearable features are then calculated according to the
following definition:
Reference Points on PPG (RP, 1∼10) = {PPGvalley ,
sdPPGa, dPPGpeak, sdPPGb, PPGpeak, sdPPGc, sdPPGd,
dPPGvalley , sdPPGe, sdPPGf , PPGvalley next}
Pulse Transit Time (PTT) = RPm - R peak, m = 1∼10
Time Duration (TD) = RRI, RPn - RPm, 1 ≤ m < n ≤ 10
Amplitude alteration (AA) = PPG(RPn) - PPG(RPm),
1 ≤ m < n ≤ 10
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Absolute Intensity of PPG (AIPPG) = PPG(RPm), m =
1∼10
Absolute Intensity of dPPG (AIdPPG) = dPPG(RPm), m =
1∼10
Absolute Intensity of sdPPG (AIsdPPG) = sdPPG(RPm), m
= 2, 4, 7∼10
Area under PPG curve (AR) =

∫ RPn

RPm
PPG-

AIPPG(PPGvalley)dt, 1 ≤ m < n ≤ 10
Pulse Width (PW) = t2 - t1, PPG(t1) = PPG(t2) = {AIPPG,
[AIPPG(RP5)-AIPPG(RP1)]*{50%, 60%, 70%}} and t1 < t2
Physiological Ratio Index (RI): Several physiological
meaningful ratio indices [29].

Fig. 2. Fiducial points of ECG, PPG, the first derivative of PPG (dPPG)
and the second derivative of PPG (sdPPG) for feature extraction, along
with the indication of several major features [7].

B. Algorithm and strategy of causal inference
1) FCI algorithm: Assuming the causal Markov and faith-

fulness, constraint-based algorithms employ the conditional
independence tests to infer the causal relationship from ob-
served data [19]. The identification of unshielded triples forms
the foundational basis of constraint-based algorithms, which
depends on the distinctions of the independence and the
conditional independence among them. However, constrain-
based methods could not distinguish between chain and fork
further, as demonstrated in Table II. That’s why the constrain-
based methods get a Markov equivalence class, in which the
direction of some edges is not oriented.

The identification of unshielded triples could help eliminate
the false causality arising from indirect causes and common
causes. For instance, the lack of independence between vari-
ables X and Y does not necessarily imply a genuine causal
relationship between them. When a variable Z exists such that
X and Y are independent given Z, it signifies the existence of
a chain or fork structure among them.

This study employs the FCI algorithm to infer an initial
causal graph, and we describe the step-by-step process of the
FCI algorithm as follows:

1. Initial skeleton identification:
The initial skeleton is identified by iteratively performing
a conditional independence test. The edge between vari-
ables X and Y will be deleted if X⊥Y | Z, where Z is
the conditional variable set.

2. Colliders recognition:

If X⊥Y and X ⊥̸⊥ Y | Z, it is recognized as a collider
within the initial skeleton, represented as X −→ Z ←−
Y .

3. Possible d separation (PDS) recognition:
Within the graph G, node Xk ∈ PDS(G, Xi), if and
only if there exists a path between Xk and Xi where
any subpath (Xm, Xl, Xh) is a collider or they form a
triangle.

4. Final skeleton identification:
Delete the edge between X and Y, if X⊥Y | PDS(G, X).
Then conduct the test for each edge within the initial
skeleton to derive the final skeleton.

5. Orienting:
Orienting the colliders within the final skeleton, and then
calibrating the direction through rules [30].

TABLE II
INDEPENDENCE AND CONDITIONAL INDEPENDENCE RELATIONSHIP OF

UNSHIELDED TRIPLE

Hypothesis
chain

X → Z → Y
fork

X ← Z → Y
collider

X → Z ← Y

X⊥Y F F T

X⊥Y | Z T T F

Note: T, F indicates the hypothesis is true or false respectively.

2) CGNN algorithm: The result inferred by constraint-based
algorithms is a Markov equivalence class, in which some
edges are not oriented. Inspired by distributional asymmetries
of variate [31], the CGNN algorithm leverages generative
neural networks to modify and orient the edges of the Markov
equivalence class.

With the outstanding representational capability of gener-
ative neural networks, the CGNN algorithm could learn the
causal relation of FCM with arbitrary accuracy. FCM takes
a triplet C = (G, f, ε) to describe the causal relation upon a
random variable vector X = (X1, X2, ...), where C represents
a set of equations:

Xi ← fi(XPa(i;G), Ei), Ei ∼ ε, i = 1, ..., d (1)

In formula (1), Xi denotes a node in a causal graph G, fi de-
scribes the causal mechanism between parental nodes Pa(i;G)
and Xi, and the noise variables E follow the non-Gaussian
distribution and are independent of each other. Given the
assumptions of distributional asymmetries in noise variables,
conventional FCM-based methods, such as the Linear Non-
Gaussian Acyclic Model (LiNGAM), employ ICA to recover
the causal relation [21].

CGNN algorithm learns the function fi on FCM through
the generative neural network, and it is trained using back-
propagation to minimize the discrepancy between the obser-
vational and generated data, measured by the Maximum Mean
Discrepancy (MMD) [32]. Further, it identifies the direction
of cause and effect by selecting the corresponding 2-variable
CGNN with a smaller MMD, and employs a greedy procedure
to orient and modify G:

• Orient each Xi−Xj in G as Xi → Xj or Xj ← Xi by
taking the smaller MMD of the corresponding 2-variable
CGNN.

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2024.3377128

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



5

• Traverse paths begin with random nodes until all nodes
are visited. Reverse edges directed toward visited nodes
once they have revealed cycles.

• Iteratively reversing the edge with a lower MMD, in the
meanwhile avoiding cycles.

3) Majority strategy for causal inference: Individual physio-
logical variations could lead to different causal graphs when
applying the causal inference algorithm independently for each
participant. This study proposes the majority strategy of causal
inference for obtaining a universal causal graph applicable
to the majority of participants. From the universal causal
graph, we wish to draw some general novel insights from the
universal causal graph for cuffless continuous BP estimation
further.

When employing the FCI algorithm, the majority principle
is applied in the context of conducting conditional indepen-
dence tests. If the test X ? Y | Z needs to be conducted during
the iteration of the FCI algorithm, it is performed respectively
on each participant in the dataset. Then, by applying the
majority strategy, a general conclusion of the test X ? Y | Z
is derived based on the agreement of more than half of the
participants.

When utilizing the CGNN algorithm, the majority principle
is reapplied to the adjacent matrix of the causal graph iden-
tified by CGNN. Once obtaining the initial causal graph by
FCI algorithm, CGNN algorithm operates individually for each
participant, drawing the respective adjacent matrix. Finally,
the universal causal graph’s adjacency matrix is then derived
by applying the majority strategy, where each element in the
adjacency matrix of the final causal graph is determined by
the majority agreement of the corresponding elements across
all the participants’ adjacency matrices.

C. Bridging the gap: integrating causal graph and BP
estimation

1) Spatio-temporal graph neural network (STGNN): Note
that the nodes exhibit complex spatial dependency within the
causal graph, while the cardiovascular system demonstrates
strong dynamic temporal dependency. On the one hand, the
underlying physiological mechanism that governs the causal
graph remains elusive, and the spatial dependency between
nodes has not yet been distinctly revealed. On the other hand,
the BP value in the current cardiac cycle could be influenced
by the states of the preceding cardiac cycles. For instance, deep
breathing or vigorous exercise could result in improved BP in
following cardiac cycles. The pronounced temporal dynamics
of cardiovascular system present huge challenges in accurately
estimating BP solely based on the information from the current
cycle.

Given these challenges, we develop a STGNN model for
cuffless continuous BP estimation with the identified causal
graph as prior knowledge. As illustrated in Fig. 3, the STGNN
model initially employs a shared fully connected (FC) layer
for preliminary feature extraction. Further, it incorporates two
layers of the spatio-temporal graph convolutional network
(STGCN) module to extract complex spatio-temporal features
for accurate cuffless continuous BP estimation. The STGCN

module can effectively capture the spatial topological prop-
erties within the causal graph by utilizing graph convolu-
tional network (GCN), while obtaining the temporal pattern
with gated recurrent unit (GRU) [33]. To mitigate the over-
smoothing problem, a PairNorm regularization layer [34] is
introduced between the STGCN layers.

Fig. 3. Structure of the proposed spatiotemporal graph neural network
(STGNN) model for causality inspired cuffless continuous BP estimation.
The STGNN architecture integrates several key components, including
a fully connected (FC) layer for initial feature extraction, a PairNorm layer
to address over-smoothing concerns, and two layers of spatiotemporal
graph convolutional network (STGCN) modules. These STGCN mod-
ules are composed of a graph convolutional network (GCN) for capturing
spatial information and a Gated Recurrent Unit (GRU) for capturing
temporal information.

2) Benchmark methods: To validate the efficacy of our
method, we compare the proposed CiGNN with four state-of-
the-art benchmark methods (including knowledge-based, data-
driven, and knowledge-data fusion method), as well as three
ablation methods. The comparison methods are elaborated as
below:

• Knowledge-based#1: We compared the CiGNN with two
most commonly studied knowledge-based methods. The
first knowledge-based method [7] estimates SBP and
DBP in terms of relative PTT change by the following
equations, where SBP0, DBP0 and PTT0 represents
the corresponding initial calibrated value, and γ is a
correction factor.

SBP = SBP0 −
2

γPTT0
(PTT − PTT0) (2)

DBP = DBP0 −
2

γPTT0
(PTT − PTT0) (3)

• Knowledge-based#2: The second knowledge-based
method [35] estimates SBP and DBP relying on the
following equations, where PP0, MBP0 and PTT0

represents the initial calibrated value of pulse pressure
(PP), mean blood pressure (MBP) and PTT, and γ is a
correction factor.

SBP = DBP + PP0(
PTT0

PTT
)2 (4)

DBP = MBP0 +
2

γ
ln

PTT0

PTT
− 1

3
PP0(

PTT0

PTT
)2 (5)

• Data-driven method: Tanveer et al. [12] proposed a
waveform-based data-driven model for BP estimation. It
utilizes a neural network to extract features from ECG
and PPG waveforms directly, then taking LSTM layers
for SBP and DBP estimation.
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• Fusion-based method: Hajj et al. [36] proposed a BP es-
timation method integrating knowledge and data-driven.
Initially, they extracted several experiential features from
PPG signal, and subsequently constructed a bi-directional
neural network for BP estimation.

• Granger Causality based (GC-based) method: Draw-
ing inspiration from Granger causality [37], our previous
work [14] reported a time-lagged causal links based
model for cuffless continuous BP estimation, where the
time-lagged causal links were extracted from the causal
graph. Since this baseline model only extracts the rough
spatio-temporal information, it could be used to validate
the efficacy of the proposed CiGNN model.

• GCN-based method: To verify CiGNN’s efficacy of
mining temporal features, this study builds a GCN-based
ablation model. According to the idea of control variates,
the GCN-based model initially takes a FC layer for pre-
liminary feature extraction. Subsequently, it incorporates
two layers of GCN to extract spatial features within the
causal graph for cuffless continuous BP estimation, and a
PairNorm regularization layer is also introduced between
the GCN layers.

• GRU-based method: We also construct a GRU-based
model for evaluating the ability of mining spatial infor-
mation of CiGNN. The GRU-based model takes the con-
catenation of wearable features within the causal graph
as its input, as the GRU architecture is unable to process
graph-structured data. Likewise, the GRU-based model
incorporates a FC layer for initial feature extraction.
Furthermore, it integrates two layers of the GRU module
to capture temporal features from proceeding continuous
cardiac cycles.

3) Model implementation: We set the sequence length as ten
cardiac cycles for STGNN and GRU-based models, and the
batch size is configured to 32. Adam optimizer and Cosine
Annealing are employed for model training, and the initial
learning rate and training epoch are specified as 0.01 and 300.
The leave-one-subject-out cross-validation (LOOCV) strategy
is employed to evaluate the performance of the proposed
methods and baselines, according to the clinical practice.

D. Data analysis and model evaluation

The causal graph is a statistic result derived from statistical
tests and scoring rules essentially. In order to verify its accu-
racy and efficacy, this study employs the analysis of the power
spectrum density (PSD) for BP and its causal features, which
are the wearable features linking with BP directly within the
causal graph. Accounting for the unevenly sampling character
of BP and its causal indicators, the Lomb-Scargle algorithm
[38] is employed for computing the PSD spanning from 0 to
0.6 Hz.

This study evaluates the proposed cuffless continuous BP
estimation model by two international standards, including the
Association for the Advancement of Medical Instrumentation
(AAMI) [39] and the IEEE Standard for Wearable Cuffless
Blood Pressure Measuring Devices (IEEE 1708) [40]. The
AAMI and IEEE 1708 standards employ mean error (ME),

TABLE III
QUANTITATIVE ANALYSIS OF SBP, DBP AND ITS CORRESPONDING

CAUSAL INDICATORS’ PSD

Index
area(LF )
area(HF )

area(LF )
area(LF+HF )

area(HF )
area(LF+HF )

SBP 0.63 0.39 0.61

DBP 6.32 0.86 0.14

PTT(R-dPPGpeak ) 0.17 0.15 0.85

AA(PPGvalley -sdPPGd ) 0.70 0.41 0.59

AA(PPGvalley -sdPPGd ) 1.82 0.65 0.35

standard deviation of error (SDE) and mean absolute differ-
ence (MAD) to quantitatively assess the model performance.
The agreement between the estimated and reference BP values
is assessed through the utilization of a Bland-Altman plot,
with the agreement limits defined as mean ± 1.96 × SD.
Furthermore, the statistical significance is evaluated utilizing
Student’s t-test, employing a significance threshold of p <0.05.

III. RESULTS

A. Causal graphs

Fig. 4. Connected branches containing (a) SBP and (b) DBP within
the initial causal graph obtained by the FCI algorithm, with a distinction
between Fig. 4 and Fig. 5 visually highlighted by the red markers.

Fig. 5. Connected branches containing (a) SBP and (b) DBP within the
causal graph obtained by the CGNN algorithm, with BP depicted in blue
and its causal indicators depicted in purple.

The causal graphs identified with the FCI algorithm and
CGNN algorithm are illustrated in Fig. 4 and Fig. 5, re-
spectively. For the identified causal graphs, we only present
the connected components that contain SBP and DBP. In the
causal graph, except for SBP and DBP, each node denotes
a specific wearable feature, and the directed arrows between
nodes represent the relationship of cause and effect.

The FCI algorithm could not determine the direction of
certain edges, so that the circle ’o’ are employed to represent
the uncertainty in Fig. 4. The circle ’o’ signifies that it could
be the arrowhead or tail for this edge. The red markers with
in Fig. 4 visually highlight the distinction between Fig. 4
and Fig. 5. The CGNN algorithm orients all the undirected
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edges in Fig. 4 and changes the direction of certain edges.
Moreover, it eliminates three edges that have been inferred by
FCI algorithm.

The causal graph presents novel indicators that offer valu-
able insights and inspirations for cuffless continuous BP esti-
mation. Within the causal graph, PTT(R-dPPGpeak) emerges
nearer causal connection with SBP and DBP than PTT(R-
PPGpeak). Furthermore, the causal graph offers an innova-
tive approach concerning the Amplitude Alteration (AA), in
which AA refers to the amplitude alteration of PPG signals
between two fiducial points, as illustrated in Fig. 2. Within the
causal graph, AA(PPGvalley-sdPPGd) is the effect of SBP, and
AA(PPGvalley-sdPPGb) and PTT(R-dPPGpeak) are the effects
of DBP.

B. Causal feature analysis

Fig. 6. (a) Continuous BP signal, (b) variations of SBP and DBP, with
respective PSD of (c) SBP and (d) DBP.

Fig. 7. Time series (a-c) and PSD (d-f) of PTT(R-dPPGpeak),
AA(PPGvalley-sdPPGb) and AA(PPGvalley-sdPPGb).

Within the causal graph, we detected the AA(PPGvalley-
sdPPGd), AA(PPGvalley-sdPPGd) and PTT(R-dPPGpeak) that
exhibit a direct causal link with BP. As a result, these three
wearable features were considered as causal indicators of BP.
To demonstrate the capability of these features in tracking
BP changes, we conducted power spectrum analysis for these
causal features and BP.

Fig. 6 illustrates the temporal variations of SBP, DBP
and their corresponding causal indicators. Fig. 7 depicts the
paired normalized power spectrum density correspondingly.
Evidently, SBP exhibits both slow and fast variations, whereas
DBP primarily demonstrates slow variation. SBP demonstrates
variability in the low-frequency (LF) domain from 0 to 0.1 Hz,
with high-frequency (HF) variation revealed between 0.3 and
0.4 Hz, while DBP predominantly concentrates on LF of 0-
0.1Hz. And this aligns with previous studies on BP variations
[8].

The PSD of PTT(R-dPPGpeak) predominantly concentrates
on the HF component, which closely resembles the fast
variation pattern observed in SBP, while diverging from the
PSD of DBP. However, AA(PPGvalley-sdPPGd), the causal
indicator of SBP, provides a better representation of both the
HF and LF components of SBP. Likewise, the PSD of DBP
exhibits a significant similarity with its corresponding causal
indicator, AA(PPGvalley-sdPPGb), in LF domain.

The spectral analysis results are in accordance with the
causal graph, providing qualitative evidence to support the
validity of the identified causal relation. This study further
quantitatively analyzes the PSD of SBP, DBP and its cor-
responding causal indicators. The following three ratios are
calculated: the ratio of the area under the power spectrum
in the LF band to the area under the power spectrum in the
HF band ( area(LF )

area(HF ) ), the ratio of the area under the power
spectrum in the LF band to the total area under the power
spectrum ( area(LF )

area(LF+HF ) ), and the ratio of the area under the
power spectrum in the HF band to the total area under the
power spectrum ( area(HF )

area(LF+HF ) ).
The three ratios are computed individually for each partici-

pant in the dataset and then averaged, as depicted in Table III.
Note that the three ratios of SBP and AA(PPGvalley-sdPPGd),
as well as DBP and AA(PPGvalley-sdPPGb), exhibit high
similarity, which further indicates the validity of the causal
graph.

C. Evaluation of BP estimation methods

In this subsection, we firstly compare the overall perfor-
mance between CiGNN and 7 benchmark methods on the
internal dataset [26] and the extra VitalDB dataset [27]. Then,
on the VitalDB dataset, we assess the performance of these
methods for 4 different age groups separately, and comparisons
are also analyzed for normotensive and hypertensive subjects,
respectively. Finally, we present these methods’ capability of
tracking BP changes elicited by various maneuvers, i.e., sit
(SIT), deep breathing (DB), supine (SUP) and active standing
(AS) on the second extra dataset [28].

1) Evaluating on the internal dataset: On the internal dataset,
Fig. 8 depicts the scatter and Bland-Altman plot for SBP and
DBP estimation, in which the proposed CiGNN method’s es-
timation results were compared to the reference BP measured
by Finapres. The Pearson correlation coefficients between the
overall estimated BP values and the reference are 0.92 and 0.97
for SBP and DBP, respectively. In the Bland-Altman plot, the
red solid line indicates the bias, while the limits of agreement
are depicted by the black dash-dot lines (bias±1.96×SD).
We can observe that the majority of data points fall within
the limits of agreement, demonstrating a close consistency
between the BP estimated by the proposed CiGNN method and
the Finapres’ measurements. The bias values for SBP and DBP
estimation are -0.85 mmHg and 0.40 mmHg, respectively.

Furthermore, Fig. 9 depicts a representative example of the
beat-to-beat comparison between the reference BP of Finapres
and the estimation BP by the proposed CiGNN method. The
average values of SBP and DBP measured by the Finapres are
103.51±7.04 mmHg and 54.03±6.60 mmHg, respectively. And
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TABLE IV
METHOD PERFORMANCE EVALUATED BY AAMI STANDARD AND IEEE 1708 STANDARD ON THE INTERNAL DATASET

Method
SBP DBP

ME ± SDE (mmHg) MAD (mmHg) ME ± SDE (mmHg) MAD (mmHg)

Knowledge-based#1 -4.89 ± 8.23 12.54 4.15 ± 7.44 7.72

Knowledge-based#2 -4.89 ± 6.01 7.18 3.01 ± 4.86 5.47

Data-driven -3.30 ± 5.39 5.24 2.56 ± 4.18 4.02

Fusion-based 0.95 ± 4.24 4.62 -0.27 ± 3.54 2.61

GC-based 0.43 ± 6.44 5.10 0.57 ± 3.89 3.05

GCN-based -2.43 ± 5.46 4.52 -0.18 ± 2.91 2.26

GRU-based -2.07 ± 4.38 3.97 0.63 ± 2.75 2.04

The proposed CiGNN -0.85 ± 3.94* 3.20* 0.40 ± 2.41* 1.85*

Note: AAMI standard requires mean error (ME) <5 mmHg and standard deviation of error (SDE) <8 mmHg.
IEEE 1708 standard requires mean absolute difference (MAD) <6 mmHg.
* indicates significant difference compared with other methods.

Fig. 8. Correlation, Bland-Altman plots of SBP (a), (c) and DBP (b), (d)
of the proposed CiGNN method.

the proposed CiGNN model estimated the average values of
SBP and DBP are 103.16±7.06 mmHg and 53.61±6.52 mmHg,
respectively. It is evident that the estimation demonstrates a
remarkable ability to accurately track the intensely oscillating
reference BP.

The evaluation results of AAMI and IEEE 1708 standards
for the proposed method and baselines are shown in Table
IV. Note that the CiGNN method demonstrates commendable
performance across multiple evaluation indicators, with ME
± SDE values being -0.85 ± 3.94 mmHg and 0.40 ± 2.41
mmHg, as well as MAD values being 3.20 mmHg and 1.85
mmHg for SBP and DBP, respectively. The performance of
the CiGNN model surpasses that of benchmark methods with
statistical significance (p <0.05), providing strong evidence
for its efficacy in capturing spatio-temporal information for
cuffless continuous BP estimation.

2) Evaluation on the extra VitaDB dataset: On the VitalDB,
the overall performance of CiGNN as well as comparison
methods are evaluated on 205 subjects (103 normotensive
and 102 hypertensive) with age ranging from 20 to 90.
Table V presents the evaluation results of AAMI and IEEE
1708 standards for CiGNN and comparison methods. The

Fig. 9. Estimated beat-to-beat SBP (a) and DBP (b) of the proposed
CiGNN method with corresponding reference Finapres BP.

CiGNN model demonstrates commendable performance across
multiple evaluation metrics, with ME ± SDE values being
-0.37 ± 4.30 mmHg and -0.84 ± 3.15 mmHg, as well as
MAD values being 4.15 mmHg and 2.79 mmHg for SBP and
DBP, respectively. Note that the proposed CiGNN achieves
smaller ME, SDE, as well as MAD for BP estimation, and
the difference is significant.

To validata the robustness of the proposed method, we
analyze its performance from the perspectives of patient age
and whether they have hypertension. And the brief statistic
information is illustrated in Table VI and VII. The VitalDB
dataset was divided into four age groups. As shown in Fig. 10,
the performance of these methods with subjects at different age
groups are analyzed. We evaluate those methods’ performance
through MAD of the estimated BP. In general, BP of the
patients aged 60-80 is the most difficult to estimation, as the
MAD of each method is high at this age stage. And for patients
aged from 20 to 40, the estimation of BP is relatively easy.
Note that the performance of those methods varied at different
age groups. It is noteworthy that the CiGNN method performs
stably and excellently across different age stages, surpassing
other comparison methods.

As presented in Fig. 11, these methods’ performance are
evaluated for the normotensive group and the hypertensive
group, respectively. Due to the complexity of BP changes in
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TABLE V
METHOD PERFORMANCE EVALUATED BY AAMI STANDARD AND IEEE 1708 STANDARD ON THE VITALDB DATASET

Method
SBP DBP

ME ± SDE (mmHg) MAD (mmHg) ME ± SDE (mmHg) MAD (mmHg)

Knowledge-based#1 -4.59 ± 12.19 14.73 -4.26 ± 5.10 4.53

Knowledge-based#2 0.13 ± 7.24 8.68 -1.34 ± 5.36 6.95

Data-driven 0.72 ± 8.18 7.77 -2.91 ± 5.59 6.14

Fusion-based -1.96 ± 5.29 5.32 -1.61 ± 3.89 3.76

GC-based -0.25 ± 5.76 5.43 -0.02 ± 4.40 4.63

GCN-based -3.46 ± 6.06 4.92 -0.04 ± 4.10 5.36

GRU-based 1.22 ± 4.81 5.08 -0.34 ± 3.63 3.29

The proposed CiGNN -0.37 ± 4.30* 4.15* -0.84 ± 3.15* 2.79*

Note: AAMI standard requires mean error (ME) <5 mmHg and standard deviation of error (SDE) <8 mmHg.
IEEE 1708 standard requires mean absolute difference (MAD) <6 mmHg.
* indicates significant difference compared with other methods.

TABLE VI
SUBJECTS’ CHARACTERISTICS OF THE VITALDB DATASET

Age groups 20-40(n=28) 40-60(n=79) 60-80(n=92) 80-100(n=6)

Gender (M/F) 17/11 46/33 68/24 2/4

BMI (Kg/m2 ) 19.9 ± 3.5 22.9 ± 3.8 23.2 ± 3.2 21.1 ± 3.6

SBP (mmHg) 117.91 ± 13.25 136.96 ± 18.52 120.11 ± 20.84 109.29 ± 16.56

DBP (mmHg) 77.80 ± 6.83 65.85 ± 8.36 59.76 ± 9.14 57.54 ± 8.16

TABLE VII
NORMOTENSIVE VS. HYPERTENSIVE GROUP INFORMATION OF THE

VITALDB DATASET

All Subjects
(n=205) Normotensive Group (n=103) Hypertensive Group (n=102)

Gender (M/F) 133 / 72 65 / 38 68/34

Mean Age (range) 57 (20-90) 54 (20-90) 61 (22-86)

BMI (Kg/m2 ) 22.6 ± 3.7 22.1 ± 3.9 23.0 ± 3.5

SBP (mmHg) 125.99 ± 4.36 112.81 ± 15.65 139.30 ± 19.67

DBP (mmHg) 64.51 ± 9.73 56.99 ± 7.96 74.00 ± 8.71

people with hypertension, it is difficult to track and estimate
their blood pressure compared with normotensive group. The
mean SBP and DBP of 103 nomotensive subjects are 112.81
± 15.65 and 56.99 ± 7.96, while the mean SBP and DBP for
102 hypertensive subjects are 139.30 ± 19.67 and 74.00 ±
8.71, respectively.

Fig. 11 depicts the performance of CiGNN and comparison
methods by ME ± SDE. We could see that the SDE of
hypertensive group are higher than that of normotensive group
for all the methods, indicating that the BP estimation for
hypertensive subjects might be more challenging. The discrep-
ancies are especially obvious in SBP estimation. The proposed
CiGNN performs better than other methods not only for the
normotensive group but also for the hypertensive group, and
the difference is significant. For normotensive group, the ME
± SDE of estimated SBP and DBP with the CiGNN method
are -0.59 ± 3.35 mmHg and 0.69 ± 2.45 mmHg, respectively.
And for hypertensive group, the corresponding ME ± SDE of
estimated SBP and DBP are 1.66 ± 4.61 mmHg and 0.91 ±
3.32 mmHg, respectively.

3) Comparison of different maneuvers: It is crucial for cuf-
fless continuous BP estimation algorithm to accurately track
the BP changes due to external interventions. So we employ
the second extra dataset [28] with BP changes induced by
different maneuvers to validate CiGNN’s ability of tracking

Fig. 10. Performance of BP estimation with the proposed and compar-
ison methods under four different age groups for (a) SBP and (b) DBP.

Fig. 11. Performance evaluation of BP estimation with the proposed
and comparison methods in normotensive group and hypertensive
group for (a) SBP and (b) DBP.

BP changes.
This work utilizes coefficient of variation (CV) to assess

the magnitude of BP changes under different maneuvers. The
definition of CV is depicted in following formula (6), where
µ is the mean value of BP and δ is the standard deviation of
BP.

CV =
δ

µ
(6)

Table VIII presents the CV of four maneuvers for SBP and
DBP, where the ranking of the magnitude of BP changes is:
SIT <DB <SUP <AS.

Fig. 12 evaluates the performance of proposed CiGNN and
other comparison methods under four various maneuvers by
means of the estimated BP’s MAD. Note that the higher CV,
the more difficult it is to estimate the BP, and the perfor-
mance of thoes methods differed across various maneuvers.
The proposed CiGNN method achieves the best performance
under four maneuvers compared with other methods, and the
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difference is significant.

TABLE VIII
COEFFICIENT OF VARIATION (CV) OF FOUR MANEUVERS FOR SBP

AND DBP ON THE EXTRA DATASET [28]

Maneuvers
SBP DBP

Mean ± SD CV Mean ± SD CV

Sit, SIT 127 ± 8.3 0.0654 77 ± 5.3 0.0688

Deep breathing, DB 132 ± 11.5 0.0871 80 ± 8.2 0.1025

Supine, SUP 129 ± 14.6 0.1132 74 ± 9.4 0.1270

Active standing, AS 140 ± 19.1 0.1364 85 ± 12.6 0.1482

Fig. 12. Performance of BP estimation with the proposed and compar-
ison methods under four various maneuvers with coefficient of variation
(CV) of the BP indicated for each maneuver. (a) SBP and (b) DBP.

IV. DISCUSSION

This study investigated the feasibility of integrating the
causal knowledge with GNN for cuffless continuous BP esti-
mation. We developed a two-stage causality inspired and GNN
based framework that can extract causal features and learn both
spatial and temporal patterns from the causal graph sequence
for better cuffless continuous BP estimation. By employing
FCI and CGNN algorithms, the causal relationship between
wearable features and BP was depicted via a causal graph.
Remarkably, the causal features linked with BP within the
causal graph demonstrated excellent capability of tracking BP
changes. The introduced STGNN model, with the causal graph
sequence as its input, exhibited commendable performance for
cuffless continuous BP estimation.

A. Causal inference

Inferring causal relationships from observed data has
drawn substantial attention, predominantly encompassing three
method types: constraint-based algorithm, score-based algo-
rithm, and FCM-based algorithm. The score-based algorithm
is among the most promising methods. It relies on the as-
sumption that there is external score-functions capable of
detecting various causal relations. Nevertheless, searching for
the optimal scoring causal graph across the entire graph
space could be computationally expensive, particularly when
dealing with a large number of extracted wearable features in
this study. Therefore, this study employs the FCI algorithm
that is computationally more effective (than the score-based
algorithm) to obtain an initial causal graph, i.e., a Markov
equivalence class. Then, the CGNN algorithm is utilized to
modify and orient the edges of the initial causal graph. In

summary, this study balances computational cost and causal
inference accuracy by applying two types of causal inference
algorithms.

As shown in Fig. 5, this study infers separate causal
graphs between SBP, DBP and wearable features, respectively,
so that there is no causal graph incorporating both SBP
and DBP simultaneously. The notably high interdependence
between SBP and DBP limits the inclusion of any other
wearable features in their connected branch of the causal
graph, if SBP and DBP are not individually taken into ac-
count for causal inference. Given the conditional indepen-
dence relationships: SBP⊥wearablefeature | DBP and
DBP⊥wearablefeature | SBP , the edges connecting SBP
or DBP with any wearable features will be removed, as the
FCI algorithm iterates.

For two definitions of PTT [41], BP has a closer causal
relation with PTT(R-dPPGpeak) in the causal graph, rather
than PTT(R-PPGpeak). This aligns with the prior studies that
PTT(R-dPPGpeak) are favored over PTT(R-PPGpeak) for the
cuffless continuous BP estimation [42]. In addition, the causal
graph suggests new causal indicators, the AA(PPGvalley-
sdPPGd) and AA(PPGvalley-sdPPGb), for cuffless continuous
BP estimation. The power spectrum analysis demonstrates
the robust tracking capability of AA(PPGvalley-sdPPGd) and
AA(PPGvalley-sdPPGb) in capturing BP variations across
both LF and HF ranges. In psychology, the LF variation of
BP are attributed to respiratory sinus arrhythmia (RSA) [43],
indicating respiratory activity [44], while the HF variation
are linked to vasomotion waves resulting from oscillations in
sympathetic vasomotor tone [45]. Hence, the newly identified
causal indicators effectively reveal the psychological modula-
tion of respiration and sympathetic tone on BP.

B. Cuffless continuous BP estimation

This study explores the role of utilizing causality for cuffless
continuous BP estimation. We creatively propose the STGNN
model for bridging the gap between causal graph, representing
the causal relation of wearable features and BP, and cuffless
continuous BP estimation. This study is a pioneering attempt
to incorporate GNN to capture the intricate causal dependent
relationship between wearable features and BP within the
cardiovascular system, specifically in the context of cuffless
continuous BP estimation. Instead, modules like GRU and
LSTM have been extensively employed for several years to
capture temporal features from continuous cardiac beats [12],
[36].

The STGNN model effectively leverages the causal prior
knowledge embedded in the causal graph, and results in
excellent performance across multiple evaluation metrics. As
described in section III-C, the performance of the STGNN
model exhibits statistically significant superiority (p <0.05)
over the GRU-based model, which demonstrates the supe-
rior ability of STGNN model for mining spatial information
embedded within the causal graph. Similarly, compared with
the GCN-based model, STGNN also demonstrates a better
ability (p <0.05) in extracting temporal information from
continuous cardiac beats. And the proposed STGNN model
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also presents a greater capacity (p <0.05) for mining spatio-
temporal information compared to the time-lagged causal links
based model.

Moreover, the evaluation results highlight the superiority
of temporal information over spatial information for BP esti-
mation, as evidenced by the better performance of the GRU-
based model compared to the GCN-based model. This finding
is consistent with prior studies that the cardiovascular system
exhibits high auto-correlation, whereby the BP value in the
current cardiac beat is easily influenced by the states of
preceding cardiac beats.

When compared to knowledge-based methods, data-driven
method as well as the fusion of knowledge and data-driven
method, the proposed CiGNN method demonstrates the best
performance on both internal and extra dataset, due to its in-
tegration of causal information and superior structural design.
For different age groups, various maneuvers and hypertensive
group, our CiGNN could achieve excellent estimation of
cuffless continuous BP. This proves that the CiGNN method
is robust for different condition of BP changes.

C. Limitation

There are several limitations of this study. First, this study
only presented the excellent tracking capability of the detected
causal indicators for BP variations within the frequency do-
main. The underlying physiological mechanism between iden-
tified causal indicators and BP has not been investigated yet.
The other limitation is that the proposed framework consists
of two stages, which have not been developed into an end-to-
end model. Last, multiple factors, such as age, maneuvers and
whether the patient has hypertension, will affect the accuracy
of BP estimation. The proposed method has not considered the
causal relationship between those factors and BP, and have not
utilized it to improve the accuracy of BP estimation.

V. CONCLUSION & FUTURE WORK

In this study, we proposed a two-stage CiGNN framework
that integrates causal inference with GNN for cuffless continu-
ous BP estimation. Initially, with two types of causal inference
algorithms alongside the majority strategy, we inferred a
causal graph depicting the causal relationship between BP
and wearable features. The causal graph identified new causal
indicators other than PTT that were able to track BP changes
effectively. Further, we proposed a STGNN model that bridges
the gap between causal graph and BP estimation creatively.
With the learned spatio-temporal information by STGNN, we
achieved substantial improvement for cuffless continuous BP
estimation.

Future study should integrate physiological knowledge to
uncover the underlying relationship between causal indicators
and BP, to establish an end-to-end causal-based cuffless con-
tinuous BP estimation model, as well as to conduct causal in-
ference analysis on hypertensive subjects. There is also scope
for work to better understand how this can be best applied
to support the prevention and treatment of hypertension for
people, patients and clinicians.
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