A WRF-UCM-SOLWEIG framework of 10m resolution to quantify the intra-day impact of urban features on thermal comfort

Abstract

City-scale outdoor thermal comfort diagnostics are essential for understanding actual heat stress. However, previous research primarily focused on the street scale. Here, we present the WRF-UCM-SOLWEIG framework to achieve fine-grained thermal comfort mapping at the city scale. The background climate condition affecting thermal comfort is simulated by the Weather Research and Forecasting (WRF) model coupled with the urban canopy model (UCM) at a local-scale (500m). The most dominant factor, mean radiant temperature, is simulated using the Solar and Longwave Environmental Irradiance Geometry (SOLWEIG) model at the micro-scale (10m). The Universal Thermal Climate Index (UTCI) is calculated based on the mean radiant temperature and local climate parameters. The influence of different ground surface materials, buildings, and tree canopies is simulated in the SOLWEIG model using integrated urban morphological data. We applied this proposed framework to the city of Guangzhou, China, and investigated the intra-day variation in the impact of urban morphology during a heat wave period. Through statistical analysis, we found that the elevation in UTCI is primarily attributed to the increase in the fraction of impervious surface (ISF) during daytime, with a maximum correlation coefficient of 0.80. Tree canopy cover has a persistent cooling effect during the day. Implementing 40% of tree cover can reduce the daytime UTCI by 1.5 to 2.0 K. At nighttime, all urban features have a negligible contribution to outdoor thermal comfort. Overall, the established framework provides essential input data and references for studies and urban planners in the practice of urban (micro)climate diagnostics and planning

    Similar works

    Full text

    thumbnail-image

    Available Versions