1,279 research outputs found

    Analysis of the major chemical compositions in Fuzhuan brick-tea and its effect on activities of pancreatic enzymes in vitro

    Get PDF
    Fuzhuan brick-tea, a fungal-fermented tea, is commonly consumed in northwest China; in places such as Sinkiang and Tibet and is thought to be helpful in digestion. To better understand Fuzhuan brick-tea and its function on digestion, the Fuzhuan brick-tea’s chemical compounds were surveyed at pivotal process phases, and its effects on pancreatic enzymes in vitro were studied. Most of the changes in amino acids, proteins, polyphenols, catechins and organic acids were found during fungal fermentation phase. All the infusions of Fuzhuan brick-tea samples had promotional effects on pancreatic amylase and protease and no effect on pancreatic lipase. Correlation analysis and principle component analysis between the main compounds of Fuzhuan brick-tea and the activities of two pancreatic enzymes were performed. The results showed that among ten significantly related compounds, the catechins and organic acids were particularly correlated with these two pancreatic enzymes’ activities. The present work confirmed the importance of microbial fermentation in the compositional changes of Fuzhuan brick-tea and its effects on two pancreatic enzymes in vitro, and suggested the possible application of microbial fermented tea such as Fuzhuan brick-tea in digestive aid.Key words: Fuzhuan brick-tea, chemical composition, pancreatic enzyme, principal component analysis

    Fabrication of Porous Anodic Alumina with Ultrasmall Nanopores

    Get PDF
    Anodization of Al foil under low voltages of 1–10 V was conducted to obtain porous anodic aluminas (PAAs) with ultrasmall nanopores. Regular nanopore arrays with pore diameter 6–10 nm were realized in four different electrolytes under 0–30°C according to the AFM, FESEM, TEM images and current evolution curves. It is found that the pore diameter and interpore distance, as well as the barrier layer thickness, are not sensitive to the applied potentials and electrolytes, which is totally different from the rules of general PAA fabrication. The brand-new formation mechanism has been revealed by the AFM study on the samples anodized for very short durations of 2–60 s. It is discovered for the first time that the regular nanoparticles come into being under 1–10 V at the beginning of the anodization and then serve as a template layer dominating the formation of ultrasmall nanopores. Under higher potentials from 10 to 40 V, the surface nanoparticles will be less and less and nanopores transform into general PAAs

    Patterns and partners within the QCD phase diagram including strangeness

    Full text link
    We review the current situation of the pattern of chiral symmetry restoration. In particular, we analyze partner degeneration for O(4)O(4) and U(1)AU(1)_A symmetries within the context of Ward Identities and Effective Theories. The application of Ward Identities to the thermal scaling of screening masses is also discussed. We present relevant observables for which an Effective Theory description in terms of Chiral Perturbation Theory and its unitarized extension are compatible with lattice data even around the transition region. We pay special attention to the role of strangeness in this context.Comment: Proceedings of the Workshop "Strangeness in Quark Matter 2019", 6 pages, 2 figure

    Effect of Biodiversity Changes in Disease Risk: Exploring Disease Emergence in a Plant-Virus System

    Get PDF
    The effect of biodiversity on the ability of parasites to infect their host and cause disease (i.e. disease risk) is a major question in pathology, which is central to understand the emergence of infectious diseases, and to develop strategies for their management. Two hypotheses, which can be considered as extremes of a continuum, relate biodiversity to disease risk: One states that biodiversity is positively correlated with disease risk (Amplification Effect), and the second predicts a negative correlation between biodiversity and disease risk (Dilution Effect). Which of them applies better to different host-parasite systems is still a source of debate, due to limited experimental or empirical data. This is especially the case for viral diseases of plants. To address this subject, we have monitored for three years the prevalence of several viruses, and virus-associated symptoms, in populations of wild pepper (chiltepin) under different levels of human management. For each population, we also measured the habitat species diversity, host plant genetic diversity and host plant density. Results indicate that disease and infection risk increased with the level of human management, which was associated with decreased species diversity and host genetic diversity, and with increased host plant density. Importantly, species diversity of the habitat was the primary predictor of disease risk for wild chiltepin populations. This changed in managed populations where host genetic diversity was the primary predictor. Host density was generally a poorer predictor of disease and infection risk. These results support the dilution effect hypothesis, and underline the relevance of different ecological factors in determining disease/infection risk in host plant populations under different levels of anthropic influence. These results are relevant for managing plant diseases and for establishing conservation policies for endangered plant species

    Variance components associated with long-echo-time MR spectroscopic imaging in human brain at 1.5T and 3T

    Get PDF
    <div><p>Object</p><p>Magnetic resonance spectroscopic imaging (MRSI) is increasingly used in medicine and clinical research. Previous reliability studies have used small samples and focussed on limited aspects of variability; information regarding 1.5T versus 3T performance is lacking. The aim of the present work was to measure the inter-session, intra-session, inter-subject, within-brain and residual variance components using both 1.5T and 3T MR scanners.</p><p>Materials and methods</p><p>Eleven healthy volunteers were invited for MRSI scanning on three occasions at both 1.5T and 3T, with four scans acquired at each visit. We measured variance components, correcting for grey matter and white matter content of voxels, of metabolite peak areas and peak area ratios.</p><p>Results</p><p>Residual variance was in general the largest component at 1.5T (8.6–24.6%), while within-brain variation was the largest component at 3T (12.0–24.7%). Inter-subject variation was around 5%, while inter- and intra-session variance were both generally small.</p><p>Conclusion</p><p>Multiple variance contributions associated with MRSI measurements were quantified and the performance of 1.5T and 3T MRI scanners compared using data from the same group of subjects. Residual error is much lower at 3T, but other variance components remain important.</p></div

    Structure of hadron resonances with a nearby zero of the amplitude

    Get PDF
    We discuss the relation between the analytic structure of the scattering amplitude and the origin of an eigenstate represented by a pole of the amplitude.If the eigenstate is not dynamically generated by the interaction in the channel of interest, the residue of the pole vanishes in the zero coupling limit. Based on the topological nature of the phase of the scattering amplitude, we show that the pole must encounter with the Castillejo-Dalitz-Dyson (CDD) zero in this limit. It is concluded that the dynamical component of the eigenstate is small if a CDD zero exists near the eigenstate pole. We show that the line shape of the resonance is distorted from the Breit-Wigner form as an observable consequence of the nearby CDD zero. Finally, studying the positions of poles and CDD zeros of the KbarN-piSigma amplitude, we discuss the origin of the eigenstates in the Lambda(1405) region.Comment: 7 pages, 3 figures, v2: published versio

    A Novel Approach to Molecular Recognition Surface of Magnetic Nanoparticles Based on Host–Guest Effect

    Get PDF
    A novel route has been developed to prepared β-cyclodextrin (β-CD) functionalized magnetic nanoparticles (MNPs). The MNPs were first modified with monotosyl-poly(ethylene glycol) (PEG) silane and then tosyl units were displaced by amino-β-CD through the nucleophilic substitution reaction. The monotosyl-PEG silane was synthesized by modifying a PEG diol to form the corresponding monotosyl-PEG, followed by a reaction with 3-isocyanatopropyltriethoxysilane (IPTS). The success of the synthesis of the monotosyl-PEG silane was confirmed with1H NMR and Fourier transform infrared (FTIR) spectroscopy. The analysis of FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed the immobilization of β-CD onto MNPs. Transmission electron microscopy (TEM) indicated that the β-CD functionalized MNPs were mostly present as individual nonclustered units in water. The number of β-CD molecules immobilized on each MNP was about 240 according to the thermogravimetric analysis (TGA) results. The as-prepared β-CD functionalized MNPs were used to detect dopamine with the assistance of a magnet

    Effect of Stocking Rate on Soil-Atmosphere CH4 Flux during Spring Freeze-Thaw Cycles in a Northern Desert Steppe, China

    Get PDF
    BACKGROUND: Methane (CH(4)) uptake by steppe soils is affected by a range of specific factors and is a complex process. Increased stocking rate promotes steppe degradation, with unclear consequences for gas exchanges. To assess the effects of grazing management on CH(4) uptake in desert steppes, we investigated soil-atmosphere CH(4) exchange during the winter-spring transition period. METHODOLOGY/MAIN FINDING: The experiment was conducted at twelve grazing plots denoting four treatments defined along a grazing gradient with three replications: non-grazing (0 sheep/ha, NG), light grazing (0.75 sheep/ha, LG), moderate grazing (1.50 sheep/ha, MG) and heavy grazing (2.25 sheep/ha, HG). Using an automatic cavity ring-down spectrophotometer, we measured CH(4) fluxes from March 1 to April 29 in 2010 and March 2 to April 27 in 2011. According to the status of soil freeze-thaw cycles (positive and negative soil temperatures occurred in alternation), the experiment was divided into periods I and II. Results indicate that mean CH(4) uptake in period I (7.51 µg CH(4)-C m(-2) h(-1)) was significantly lower than uptake in period II (83.07 µg CH(4)-C m(-2) h(-1)). Averaged over 2 years, CH(4) fluxes during the freeze-thaw period were -84.76 µg CH(4)-C m(-2) h(-1) (NG), -88.76 µg CH(4)-C m(-2) h(-1) (LG), -64.77 µg CH(4)-C m(-2) h(-1) (MG) and -28.80 µg CH(4)-C m(-2) h(-1) (HG). CONCLUSIONS/SIGNIFICANCE: CH(4) uptake activity is affected by freeze-thaw cycles and stocking rates. CH(4) uptake is correlated with the moisture content and temperature of soil. MG and HG decreases CH(4) uptake while LG exerts a considerable positive impact on CH(4) uptake during spring freeze-thaw cycles in the northern desert steppe in China
    corecore