2,261 research outputs found
TB128: Beauveria bassiana for Control of Colorado Potato Beetle (Coleoptera: Chrysomelidae) in Maine
Beauveria bassiana (Balsamo) Vuill. (Bb), a fungal pathogen of the Colorado potato beetle has been used to control CPB in Europe. Preliminary studies in the United States gave promising results for CPB control by using the fungus. Based on these studies, a three-year pilot program was initiated to evaluate the potential for using Bb o control the Colorado potato beetle in the U.S. We report herein on the results obtained in southern Maine from using this mycoinsecticide to control the beetle.https://digitalcommons.library.umaine.edu/aes_techbulletin/1064/thumbnail.jp
Certification of damage tolerant composite structure
A reliability based certification testing methodology for impact damage tolerant composite structure was developed. Cocured, adhesively bonded, and impact damaged composite static strength and fatigue life data were statistically analyzed to determine the influence of test parameters on the data scatter. The impact damage resistance and damage tolerance of various structural configurations were characterized through the analysis of an industry wide database of impact test results. Realistic impact damage certification requirements were proposed based on actual fleet aircraft data. The capabilities of available impact damage analysis methods were determined through correlation with experimental data. Probabilistic methods were developed to estimate the reliability of impact damaged composite structures
Human dynamics revealed through Web analytics
When the World Wide Web was first conceived as a way to facilitate the
sharing of scientific information at the CERN (European Center for Nuclear
Research) few could have imagined the role it would come to play in the
following decades. Since then, the increasing ubiquity of Internet access and
the frequency with which people interact with it raise the possibility of using
the Web to better observe, understand, and monitor several aspects of human
social behavior. Web sites with large numbers of frequently returning users are
ideal for this task. If these sites belong to companies or universities, their
usage patterns can furnish information about the working habits of entire
populations. In this work, we analyze the properly anonymized logs detailing
the access history to Emory University's Web site. Emory is a medium size
university located in Atlanta, Georgia. We find interesting structure in the
activity patterns of the domain and study in a systematic way the main forces
behind the dynamics of the traffic. In particular, we show that both linear
preferential linking and priority based queuing are essential ingredients to
understand the way users navigate the Web.Comment: 7 pages, 8 figure
Fast algorithms for handling diagonal constraints in timed automata
A popular method for solving reachability in timed automata proceeds by
enumerating reachable sets of valuations represented as zones. A na\"ive
enumeration of zones does not terminate. Various termination mechanisms have
been studied over the years. Coming up with efficient termination mechanisms
has been remarkably more challenging when the automaton has diagonal
constraints in guards.
In this paper, we propose a new termination mechanism for timed automata with
diagonal constraints based on a new simulation relation between zones.
Experiments with an implementation of this simulation show significant gains
over existing methods.Comment: Shorter version of this article to appear in CAV 201
A New Monte Carlo Algorithm for Protein Folding
We demonstrate that the recently proposed pruned-enriched Rosenbluth method
(P. Grassberger, Phys. Rev. E 56 (1997) 3682) leads to extremely efficient
algorithms for the folding of simple model proteins. We test them on several
models for lattice heteropolymers, and compare to published Monte Carlo
studies. In all cases our algorithms are faster than all previous ones, and in
several cases we find new minimal energy states. In addition to ground states,
our algorithms give estimates for the partition sum at finite temperatures.Comment: 4 pages, Latex incl. 3 eps-figs., submitted to Phys. Rev. Lett.,
revised version with changes in the tex
Timed Parity Games: Complexity and Robustness
We consider two-player games played in real time on game structures with
clocks where the objectives of players are described using parity conditions.
The games are \emph{concurrent} in that at each turn, both players
independently propose a time delay and an action, and the action with the
shorter delay is chosen. To prevent a player from winning by blocking time, we
restrict each player to play strategies that ensure that the player cannot be
responsible for causing a zeno run. First, we present an efficient reduction of
these games to \emph{turn-based} (i.e., not concurrent) \emph{finite-state}
(i.e., untimed) parity games. Our reduction improves the best known complexity
for solving timed parity games. Moreover, the rich class of algorithms for
classical parity games can now be applied to timed parity games. The states of
the resulting game are based on clock regions of the original game, and the
state space of the finite game is linear in the size of the region graph.
Second, we consider two restricted classes of strategies for the player that
represents the controller in a real-time synthesis problem, namely,
\emph{limit-robust} and \emph{bounded-robust} winning strategies. Using a
limit-robust winning strategy, the controller cannot choose an exact
real-valued time delay but must allow for some nonzero jitter in each of its
actions. If there is a given lower bound on the jitter, then the strategy is
bounded-robust winning. We show that exact strategies are more powerful than
limit-robust strategies, which are more powerful than bounded-robust winning
strategies for any bound. For both kinds of robust strategies, we present
efficient reductions to standard timed automaton games. These reductions
provide algorithms for the synthesis of robust real-time controllers
A possible mechanism for cold denaturation of proteins at high pressure
We study cold denaturation of proteins at high pressures. Using
multicanonical Monte Carlo simulations of a model protein in a water bath, we
investigate the effect of water density fluctuations on protein stability. We
find that above the pressure where water freezes to the dense ice phase
( kbar), the mechanism for cold denaturation with decreasing
temperature is the loss of local low-density water structure. We find our
results in agreement with data of bovine pancreatic ribonuclease A.Comment: 4 pages for double column and single space. 3 figures Added
references Changed conten
The Origin of the Designability of Protein Structures
We examined what determines the designability of 2-letter codes (H and P)
lattice proteins from three points of view. First, whether the native structure
is searched within all possible structures or within maximally compact
structures. Second, whether the structure of the used lattice is bipartite or
not. Third, the effect of the length of the chain, namely, the number of
monomers on the chain. We found that the bipartiteness of the lattice structure
is not a main factor which determines the designability. Our results suggest
that highly designable structures will be found when the length of the chain is
sufficiently long to make the hydrophobic core consisting of enough number of
monomers.Comment: 17 pages, 2 figure
A Solvable Model of Secondary Structure Formation in Random Hetero-Polymers
We propose and solve a simple model describing secondary structure formation
in random hetero-polymers. It describes monomers with a combination of
one-dimensional short-range interactions (representing steric forces and
hydrogen bonds) and infinite range interactions (representing polarity forces).
We solve our model using a combination of mean field and random field
techniques, leading to phase diagrams exhibiting second-order transitions
between folded, partially folded and unfolded states, including regions where
folding depends on initial conditions. Our theoretical results, which are in
excellent agreement with numerical simulations, lead to an appealing physical
picture of the folding process: the polarity forces drive the transition to a
collapsed state, the steric forces introduce monomer specificity, and the
hydrogen bonds stabilise the conformation by damping the frustration-induced
multiplicity of states.Comment: 24 pages, 14 figure
Highly Designable Protein Structures and Inter Monomer Interactions
By exact computer enumeration and combinatorial methods, we have calculated
the designability of proteins in a simple lattice H-P model for the protein
folding problem.
We show that if the strength of the non-additive part of the interaction
potential becomes larger than a critical value, the degree of designability of
structures will depend on the parameters of potential. We also show that the
existence of a unique ground state is highly sensitive to mutation in certain
sites.Comment: 14 pages, Latex file, 3 latex and 6 eps figures are include
- …