35 research outputs found

    Genome-wide Association Meta-analysis of Childhood and Adolescent Internalizing Symptoms

    Get PDF
    Objective: To investigate the genetic architecture of internalizing symptoms in childhood and adolescence. Method: In 22 cohorts, multiple univariate genome-wide association studies (GWASs) were performed using repeated assessments of internalizing symptoms, in a total of 64,561 children and adolescents between 3 and 18 years of age. Results were aggregated in meta-analyses that accounted for sample overlap, first using all available data, and then using subsets of measurements grouped by rater, age, and instrument. Results: The meta-analysis of overall internalizing symptoms (INToverall) detected no genome-wide significant hits and showed low single nucleotide polymorphism (SNP) heritability (1.66%, 95% CI = 0.84-2.48%, n(effective) = 132,260). Stratified analyses indicated rater-based heterogeneity in genetic effects, with self-reported internalizing symptoms showing the highest heritability (5.63%, 95% CI = 3.08%-8.18%). The contribution of additive genetic effects on internalizing symptoms appeared to be stable over age, with overlapping estimates of SNP heritability from early childhood to adolescence. Genetic correlations were observed with adult anxiety, depression, and the well-being spectrum (vertical bar r(g)vertical bar > 0.70), as well as with insomnia, loneliness, attention-deficit/hyperactivity disorder, autism, and childhood aggression (range vertical bar r(g)vertical bar = 0.42-0.60), whereas there were no robust associations with schizophrenia, bipolar disorder, obsessive-compulsive disorder, or anorexia nervosa. Conclusion: Genetic correlations indicate that childhood and adolescent internalizing symptoms share substantial genetic vulnerabilities with adult internalizing disorders and other childhood psychiatric traits, which could partially explain both the persistence of internalizing symptoms over time and the high comorbidity among childhood psychiatric traits. Reducing phenotypic heterogeneity in childhood samples will be key in paving the way to future GWAS success.Peer reviewe

    Partial Identification of the Average Causal Effect in Multiple Study Populations: The Challenge of Combining Mendelian Randomization Studies

    Get PDF
    Background: Researchers often use random-effects or fixed-effects meta-analysis to combine findings from multiple study populations. However, the causal interpretation of these models is not always clear, and they do not easily translate to settings where bounds, rather than point estimates, are computed. Methods: If bounds on an average causal effect of interest in a well-defined population are computed in multiple study populations under specified identifiability assumptions, then under those assumptions the average causal effect would lie within all study-specific bounds and thus the intersection of the study-specific bounds. We demonstrate this by pooling bounds on the average causal effect of prenatal alcohol exposure on attention deficit-hyperactivity disorder symptoms, computed in two European cohorts and under multiple sets of assumptions in Mendelian randomization (MR) analyses. Results: For all assumption sets considered, pooled bounds were wide and did not identify the direction of effect. The narrowest pooled bound computed implied the risk difference was between-4 and 34 percentage points. Conclusions: All pooled bounds computed in our application covered the null, illustrating how strongly point estimates from prior MR studies of this effect rely on within-study homogeneity assumptions. We discuss how the interpretation of both pooled bounds and point estimation in MR is complicated by possible heterogeneity of effects across populations

    Mendelian randomisation approaches to the study of prenatal exposures: A systematic review

    Get PDF
    Background: Mendelian randomisation (MR) designs apply instrumental variable techniques using genetic variants to study causal effects. MR is increasingly used to evaluate the role of maternal exposures during pregnancy on offspring health. Objectives: We review the application of MR to prenatal exposures and describe reporting of methodologic challenges in this area. Data sources: We searched PubMed, EMBASE, Medline Ovid, Cochrane Central, Web of Science, and Google Scholar. Study selection and data extraction: Eligible studies met the following criteria: (a) a maternal pregnancy exposure; (b) an outcome assessed in offspring of the pregnancy; and (c) a genetic variant or score proposed as an instrument or proxy for an exposure. Synthesis: We quantified the frequency of reporting of MR conditions stated, techniques used to examine assumption plausibility, and reported limitations. Results: Forty-three eligible studies were identified. When discussing challenges or limitations, the most common issues described were known potential biases in the broader MR literature, including population stratification (n = 29), weak instrument bias (n = 18), and certain types of pleiotropy (n = 30). Of 22 studies presenting point estimates for the effect of exposure, four defined their causal estimand. Twenty-four studies discussed issues unique to prenatal MR, including selection on pregnancy (n = 1) and pleiotropy via postnatal exposure (n = 10) or offspring genotype (n = 20). Conclusions: Prenatal MR studies frequently discuss issues that affect all MR studies, but rarely discuss problems specific to the prenatal context, including selection on pregnancy and effects of postnatal exposure. Future prenatal MR studies should report and attempt to falsify their assumptions, with particular attention to issues specific to prenatal MR. Further research is needed to evaluate the impacts of biases unique to prenatal MR in practice

    SEA Ligation Is Accelerated at Mildly Acidic pH. Application to the Formation of Difficult Peptide Junctions

    No full text
    The bis(2-sulfanylethyl)amido (SEA)-mediated ligation has been introduced in 2010 as a novel chemoselective peptide bond forming reaction. SEA ligation is a useful reaction for protein total synthesis that is complementary to the native chemical ligation (NCL). In particular, SEA ligation proceeds efficiently in a wide range of pH, from neutral pH to pH 3-4. Thus, the pH can be chosen to optimize the solubility of the peptide segments or final product. It can be also chosen to facilitate the formation of difficult junctions, since the rate of SEA ligation increases significantly by decreasing the pH from 7.2 to 4.0. Here we describe a protocol for SEA ligation at pH 5.5 in the presence of 4-mercaptophenylacetic acid (MPAA) or at pH 4.0 in the presence of a newly developed diselenol catalyst. The protocols describe the formation of a valyl-cysteinyl peptide bond between two model peptides.<br /
    corecore