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Introduction

When constructing a model for an outcome of interest 
(e.g., a linear regression model), the choice of covariates 
to be included depends in part on the researcher’s aims. 
(Although the term covariate has been variously defined, 
here we simply use covariate to refer to an explanatory 
variable included in a regression model that is not the ex-
planatory variable of interest, i.e., the exposure.) If the 
aim is to build a predictive model [1], covariate selection 
focuses on improving model predictions while also limit-
ing overfitting, which occurs when an overly complex 
model yields predictions that are too specific to a particu-
lar dataset, reducing its generalizability [2, 3]. Alterna-
tively, the aim may be to build a causal model [1]. (Note 
that Table 1 contains a glossary with definitions for all key 
terms, which are italicized.) For instance, one might build 
a causal model in order to quantify the average causal ef-
fect of an exposure on an outcome. The average causal 

effect can be defined as the average difference in outcome 
had each individual in the population experienced the ex-
posure, as compared to if no one had experienced the ex-
posure [4]. As an illustration for this commentary, we will 
consider a causal model of the effect of the exposure pre-
term birth on the outcome attention-deficit/hyperactivity 
disorder (ADHD) during childhood. Because this exam-
ple is offered purely for illustrative purposes, we have de-
liberately simplified it and ignored methodological diffi-
culties that would complicate a real-world investigation 
of this issue (e.g., mismodeling the functional form of the 
variables, measurement error, and presence of unmea-
sured confounders).

With causal models, the aim is to obtain the least bi-
ased possible estimate of the average causal effect, where 
the term “bias” is used to mean any deviation from an ac-
curate measurement [5]. Thus, covariate selection should 
focus on eliminating or reducing bias. One type of bias 
occurs when the estimated causal effect reflects not only 
the causal relationship between the exposure and the out-
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come but also other relationships between the exposure 
and the outcome [6], as is typically the case in observa-
tional studies [7]. In our example, the unadjusted asso-
ciation between preterm birth and ADHD may be a bi-
ased estimate of the causal effect of interest if there are 
other variables that link preterm birth and ADHD, aside 
from the intermediate variables that mediate the expo-
sure’s causal effect on the outcome (i.e., variables in the 
causal pathway between preterm birth and ADHD).

When selecting covariates, researchers may choose to 
include certain variables because they believe them to be 
potential confounders (i.e., common causes of the expo-
sure and outcome) that, if not included in the model, will 
lead to biased estimates of the average causal effect. For 
example, researchers might adjust for maternal smoking 
during pregnancy because they believe that it has a caus-
al effect on both preterm birth and ADHD. If this were 
the case, then unadjusted estimates of the association be-
tween preterm birth and ADHD would be biased, because 

these estimates would reflect not only the association due 
to the causal effect of preterm birth on ADHD but also 
the association due to the common effects of maternal 
smoking during pregnancy on exposure and outcome. 
Additionally, researchers at times choose to include cer-
tain covariates because existing research has identified 
them as risk factors for the outcome, or as correlates of 
the exposure. However, adjusting for covariates can, in 
certain circumstances, do more harm than good by intro-
ducing new bias into an estimate of the causal effect  
[8, 9].

To examine the potential perils of covariate adjust-
ment we provide an introduction to causal directed acy-
clic graphs (DAGs). Causal DAGs can clarify how adjust-
ment for a given covariate might impact bias, by provid-
ing a simple way to visualize assumptions about the 
statistical relationships between the exposure, outcome, 
and covariates in question. We illustrate their use with the 
example of preterm birth and ADHD.

Table 1. Glossary of key terms

Term Definition

Average causal effect The contrast in mean counterfactual outcomes in a population had 2 different interventions been 
applied to the population

Blocked path On a DAG a path is blocked if and only if it contains a variable that is not a collider and has been 
adjusted for or if it contains a collider and neither that collider nor its descendants have been 
adjusted for

Causal model A model used to estimate differences in the distribution of an outcome had different interventions 
been applied (e.g., to estimate the average causal effect of an exposure on an outcome)

Collider A variable on a DAG path that is directly affected by 2 other variables; on a DAG this is represented 
by a node at which 2 edges collide

Collider stratification bias Bias resulting from adjusting for a collider, which opens a path between the variables that directly 
affect the collider

Counterfactual outcome The potential outcomes that would have been observed in individuals had they received a particular 
intervention; here, intervention is used in a loose sense that includes exposures (e.g., to a risk factor 
for an outcome)

Directed acyclic graph (DAG) A kind of diagram consisting of nodes and edges, where the edges are directed (i.e., unidirectional 
arrows) and the diagram is acyclic (i.e., one cannot return to the same node by following a path in 
the direction of the arrows); a causal DAG refers to a DAG that represents all causal relationships 
between the included variables

Edge Directed arrows on a DAG; on a causal DAG these arrows represent causal effects of different 
variables (i.e., nodes) on each other

Open path On a DAG, a path that is not blocked

Node A vertex on a DAG; on a causal DAG these vertices represent random variables

Path A connection between 2 nodes on a DAG through a particular continuous sequence of edges; note 
that the path does not have to follow the direction of the arrows
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An Introduction to DAGs

The development and use of DAGs to clarify causal 
models in epidemiologic research has been described 
elsewhere [10–12]. Causal DAGs are a kind of causal dia-
gram consisting of nodes, which represent variables, and 
directed edges (i.e., arrows), which represent causal rela-
tionships between variables. As an example, see Figure 1, 
which presents a DAG for a simplified causal model for 
preterm birth and ADHD, which we consider in detail in 
the next section. An arrow on a DAG does not imply that 
there is definitely a causal relationship between the 2 vari-
ables but only that there might be a relationship between 
them. In contrast, the absence of an arrow between 2 vari-
ables implies that the researcher is certain that one vari-
able does not cause the other. These graphs are acyclic, 
which means that, if one follows the direction of arrows 
on a DAG, no path from a variable will lead back to itself. 

Researchers can apply several graphical rules to DAGs 
to help decide which, if any, covariates to include in the 
causal model (Fig. 2). These rules relate to paths between 
the variables depicted in the graph. A path is a connection 
between 2 variables on a DAG through a particular con-
tinuous sequence of arrows. Note that the presence of a 
path through a series of variables is independent of the 
directions of the arrows involved in the path and does not 
imply any particular type of association between those 
variables. In other words, a path does not need to follow 
the direction of the arrows involved (e.g., in Fig. 1, there 
is a path between preterm birth and ADHD that passes 
through maternal smoking during pregnancy). However, 
the direction of the arrows does affect whether a path is 
open or blocked. An open path can be thought of as a path 
along which one can travel unimpeded, in the sense that 
one does not encounter blocks at any of the nodes be-
tween the endpoints; determining whether a path is 

blocked at a particular node involves the application of 
several rules that are described in the following para-
graph. Notably, open paths imply statistical associations 
between the endpoint variables, whereas blocked paths 
imply the absence of an association. If a path is open, then 
it will contribute to the estimated association between the 
variables on the 2 ends of the path. Thus, aside from paths 
representing the causal effect of interest (e.g., paths from 
preterm birth to ADHD), all other paths between the ex-
posure and outcome will ideally be blocked. If not, then 
the resulting estimate of the average causal effect will be 
biased, although the magnitude of this bias will vary de-
pending on the strength and nature of the causal relation-
ships represented in the other open paths, as we illustrate 
in the following section. Of course, it is possible that all 
other open paths between exposure and outcome might 
cancel each other exactly, meaning that the net bias due 
to other open paths would be null. However, such balanc-
ing is empirically untestable and seems unlikely to occur 
in practice.

Whether a path is open or blocked depends on the re-
lationships between the variables on that path and on 
which of those variables are included as covariates in the 
causal model. In a simple unadjusted model, paths be-
tween the exposure and outcome are open unless they 
pass through a collider (rule 1). A collider is a variable that 
is caused by the 2 adjacent variables along that path, as 
represented by edges pointing toward the variable. To un-
derstand why the presence of a collider blocks the path, 
suppose that maternal stressors during pregnancy and 
shared genetic liability both cause maternal smoking dur-
ing pregnancy, which in turn causes both preterm birth 
and ADHD (Fig. 1). (Note that we use the variable name 
“shared genetic liability” as short-hand for overlapping 
genetic risk factors for maternal smoking during preg-
nancy and child ADHD.) Maternal smoking is a collider 

Maternal
stressors

(pregnancy)

Maternal
smoking

(pregnancy)

Child
preterm
(birth)

Child
ADHD
(age 7)

Shared
genetic
liability

Fig. 1. Example of DAG for the causal effect 
of child preterm birth on child ADHD. 
Variables are represented by nodes on a 
DAG. Assumed causal relationships be-
tween variables are represented by directed 
edges (i.e., arrows) between nodes. Typi-
cally, variables later in terms of temporal 
order appear farther to the right.
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on the path between preterm birth and ADHD that pass-
es through both maternal stressors, maternal smoking, 
and shared genetic liability; this type of path is referred to 
as an M-shaped path (because it appears in the shape of 
the letter M when viewed sideways on our graph). Al-
though maternal stressors can affect maternal smoking 
during pregnancy, this effect will not be transmitted to 
shared genetic liability because the latter is a cause, not an 

effect, of maternal smoking. Thus, the maternal smoking 
variable blocks this particular path.

Notably, adjusting for a variable can block a previous-
ly open path or open a previously blocked path, depend-
ing on the relationships between the variables in question. 
More specifically, adjusting for a variable that is not a col-
lider on a particular path will block that path (rule 2). For 
example, if maternal smoking during pregnancy caused 
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Fig. 2. Graphical rules for DAGs. For illus-
trative purposes, the blue arrow represents 
the relationship of interest (the causal ef-
fect of child preterm birth on child ADHD), 
and the letter b denotes the average causal 
effect one seeks to estimate. Also, in the ex-
amples, red is used to highlight how far one 
can travel along a given path from child 
preterm birth toward child ADHD before 
the path is blocked.

(Figure continued on next page.)
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Rule 4: Condi�oning on the descendant of a collider opens a path through that collider. In other words, if there is 
an arrow from a collider to another variable, adjus�ng for the la�er variable will open the path through the 
collider. Below, adjus�ng for maternal preeclampsia opens the previously blocked path that goes through the 
nodes child preterm birth - maternal stressors - maternal smoking – shared gene�c liability - child ADHD, because 
maternal smoking is a collider on that par�cular path and maternal preeclampsia is a descendant of maternal 
smoking. 
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both child preterm birth and child ADHD, adjusting for 
maternal smoking would block the path from preterm 
birth to ADHD that goes through maternal smoking and 
represents confounding. In this instance, adjusting for 
maternal smoking would reduce bias due to confound-
ing. However, adjusting for a variable that is a collider 
(rule 3) or its descendant (rule 4) opens the path previ-
ously blocked by that collider. To illustrate this, let us re-
turn to the example of maternal smoking. Since it is a col-
lider on the aforementioned M-shaped path between pre-
term birth and ADHD, that path is blocked without 
adjusting for maternal smoking in the causal model (rule 
1). In fact, adjusting for maternal smoking would actu-
ally induce a relationship between shared genetic liability 
and maternal stressors, thereby opening the M-shaped 
path between preterm birth and ADHD and introducing 
bias into the estimate of the average causal effect. This 
bias can be positive or negative and is referred to as col-
lider stratification bias (the more general term) or M-bias 
(a specific type of collider stratification bias that occurs, 
e.g., when adjusting for a covariate that shares a common 
cause with the exposure and another common cause with 
the outcome) [8]. To understand how adjusting for a col-
lider introduces bias, recall that adjusting for a variable 
amounts to holding it constant. At a constant level of ma-
ternal smoking, knowing the mother’s stressors tells you 
something about their shared genetic liability, because 
maternal smoking is a function of shared genetic liability 
and maternal stressors. In this example, adjusting for ma-
ternal smoking both reduces bias (by blocking the path 
through maternal smoking that represents confounding) 
and introduces bias (by opening the M-shaped path 
through maternal smoking).

To eliminate bias due to other open paths between the 
exposure and outcome, the researcher must select a set of 
covariates such that all paths between the exposure and 
outcome are blocked, except for the path representing the 
causal effect of interest. Of course, in some situations 
(e.g., if the exposure is randomly assigned), no adjust-
ment is needed because there are no longer any paths that 
have edges directed to the exposure because the only 
cause of the exposure is the random process. Alternative-
ly, in other situations, even if every variable were mea-
sured, there is no set of covariates that can block all other 
paths. These types of situations necessitate using more 
complex methods of estimation [13, 14], which require 
their own similarly strong assumptions. These complex 
methods can also be useful in situations where there is a 
set of covariates that block all other paths, but some or all 
of the covariates in that set have not been measured [15].

Illustrative Example

We now return to our example of preterm birth and 
ADHD. By way of background, the potential effect of pre-
term birth on ADHD has received considerable attention 
from researchers [16–20]. Most studies have documented 
a positive association between the 2 variables, and various 
causal mechanisms have been proposed [21, 22]. How-
ever, the interpretation of these findings is complicated 
by the researchers’ choice of covariates, since adjusting 
for additional variables in the causal model could intro-
duce bias, depending on those variables’ actual relation-
ship to preterm birth and ADHD. As noted above, re-
searchers often choose to include certain covariates be-
cause they believe that they may confound the 
exposure-outcome relationship. For example, maternal 
smoking during pregnancy has been considered a poten-
tial confounder [16], leading to its inclusion as a covariate 
in models used to examine the relationship between pre-
term birth and ADHD [17, 18, 20]. However, although 
there is a consistent association between maternal smok-
ing during pregnancy and child ADHD [23], maternal 
smoking is not necessarily a cause of ADHD; instead, the 
association may reflect a common cause, such as a shared 
genetic liability [24].

Since our example is intended for didactic purposes, 
we introduce several simplifying assumptions, beginning 
with the assumption that relevant constructs (e.g., ADHD 
in childhood and maternal smoking) can be measured by 
single variables. Critically, we assume that the DAG de-
picted in Figure 1 includes all paths between preterm 
birth and ADHD, including paths that pass through ma-
ternal smoking during pregnancy (a potential confound-
er). We also assume that maternal stressors during preg-
nancy and shared genetic liability have not been mea-
sured in the study, and it is thus not possible to include 
them as covariates. We recognize that, in practice, these 
assumptions are unlikely to be met, and thus our example 
is not meant to be taken as a valid analysis of the actual 
causal effects involved.

The DAG in Figure 1, which represents the assumed 
causal relationships among the variables involved, de-
picts several pathways by which maternal smoking could 
relate to preterm birth and ADHD. One of these ways is 
as a confounder, i.e., a cause of both preterm birth and 
ADHD. However, maternal smoking could also relate to 
the exposure and outcome through common causes (e.g., 
maternal stressors during pregnancy and shared genetic 
liability, respectively). Depending on which of these paths 
is present, including maternal smoking as a covariate (i.e., 
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in the causal model for the effect of preterm birth on 
ADHD) could increase bias, reduce bias, or both.

Applying the graphical rules presented in Figure 2 to 
the question of how to handle maternal smoking, we can 
see that, without adjusting for maternal smoking, there 
are 3 open paths between preterm birth and ADHD aside 
from the path representing the causal effect of preterm 
birth on ADHD. These other open paths between preterm 
birth and ADHD, which represent confounding, include 
the path that goes through maternal smoking only, the one 
that goes through both maternal stressors and maternal 
smoking, and the one that goes through both maternal 
smoking and shared genetic liability. Due to these open 
paths through maternal smoking, we can expect that un-
adjusted estimates of the average causal effect (of preterm 
birth on ADHD) will be biased. Including maternal smok-
ing as a covariate in our causal model will block these 
paths, eliminating these particular sources of bias. How-
ever, adjusting for maternal smoking will also introduce 
collider stratification bias, as noted above. This happens 
because maternal smoking is a collider on the M-shaped 
path that connects preterm birth and ADHD via maternal 
stressors, maternal smoking, and shared genetic liability.

Whether blocking the 3 previously open paths or 
opening the 1 previously blocked path introduces more 

bias depends on the strengths of the relationship between 
the variables on these paths through maternal smoking. 
To illustrate this point, we performed simulations for 2 
scenarios where the strengths of these relationships differ 
markedly (note that the selected values of the parameters 
were not based on actual empirical evidence from the lit-
erature but rather were chosen to illustrate scenarios for 
didactic purposes). In these simulations, we make several 
additional simplifying assumptions, including assump-
tions that the models in our simulations are correctly 
specified and that predictors (e.g., preterm birth) can be 
measured without error. In reality, violations of these as-
sumptions may represent additional sources of bias.

All simulations were performed using R for MAC OS 
X version 3.4.4 [25]. (See online suppl. Appendix A for 
code; see www.karger.com/doi/10.1159/000517104 for all 
online suppl. material) For the first and second scenarios, 
we generated 10,000 datasets (with n = 250) consistent 
with the DAGs depicted in Figure 3a and b, respectively. 
More specifically, datasets were generated under the as-
sumption of normality for each exogenous variable and 
the standard assumptions of linear regression (linearity, 
independent observations, homoskedasticity, and nor-
mality of errors) for the conditional distribution of each 
endogenous variable. Further, in the models used to gen-
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Fig.  3. Two scenarios for how maternal 
smoking during pregnancy relates to child 
preterm birth and to child ADHD. It is not 
standard practice to include numeric val-
ues corresponding to paths; however, we 
do so in a and b for illustrative purposes, to 
highlight the differing strength of the rela-
tionships depicted in the 2 contrasting sce-
narios. The magnitude of the value appear-
ing next to an edge reflect the strength of 
the (directed) relationship between the 2 
variables connected by the edge in the 
model used to generate simulated data con-
sistent with the DAG.
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erate the data, the means of exogenous variables were set 
equal to 0, the coefficients of the linear regression models 
(used to generate the endogenous variables) were set equal 
to the numeric values appearing next to the relevant edges 
in Figure 3a (first scenario) or Figure 3b (second scenar-
io), and the variances of all variables were set equal to 1.

In the first scenario we examine (Fig.  3a), maternal 
smoking during pregnancy has strong effects on preterm 
birth and ADHD, reflecting a scenario where maternal 
smoking does confound the relationship between the two. 
Further, in this scenario, the unmeasured common causes 
(i.e., maternal stressors in pregnancy and shared genetic 
liability) have minimal effects on maternal smoking and 
preterm birth and on maternal smoking and ADHD, re-
spectively. In this scenario, the unadjusted estimate (i.e., 
0.23) of the coefficient for preterm birth (i.e., in a linear 
regression model for ADHD fitted to the simulated data) 
is heavily biased away from the true value (=0.14), where-
as the estimate adjusted for maternal smoking (i.e., 0.14) 
is effectively unbiased. This contrasts with the second sce-
nario (Fig. 3b), where maternal smoking is a very weak 
confounder of the relationship between preterm birth and 
ADHD, but the unmeasured common causes (i.e., mater-
nal stressors during pregnancy and shared genetic liabil-
ity) have strong effects on maternal smoking and preterm 
birth and on maternal smoking and ADHD, respectively. 
In this scenario, the estimate adjusted for maternal smok-
ing (i.e., 0.08) is more biased than the unadjusted estimate 
(i.e., 0.15), which is close to the true value (=0.14) of the 
average causal effect of preterm birth on ADHD in our 
simulation. Notably, neither estimate in this scenario is as 
biased as the unadjusted estimate in the first scenario. 
These results are consistent with prior theoretical work [8] 
and simulation studies [26, 27] of the situation where a 
potential covariate is both a true confounder of the expo-
sure-outcome relationship and also a collider on another 
path between the exposure and outcome. These studies 
suggest that the bias introduced by adjusting for that co-
variate could be less than the bias present in an unadjust-
ed analysis unless the confounding effects are small com-
pared to the effects of the unmeasured common causes.

Discussion

As the above example illustrates, when constructing a 
causal model, adjusting for a given variable can reduce 
bias, introduce bias, or both, depending on the true caus-
al structure between the variables in question. If the po-
tential covariate is both a confounder of the exposure-

outcome relationship and a collider on another path be-
tween them, research suggests that the confounding bias 
eliminated by adjusting for the covariate will likely out-
weigh the collider stratification bias introduced by doing 
so, unless the confounding effects are small compared to 
the effects of the unmeasured common causes. Many re-
al-world examples, including the relationship between 
preterm birth and ADHD, may more closely resemble the 
first scenario, meaning that adjusting for the potential 
confounder (e.g., maternal smoking) would result in less 
bias than failing to adjust for it. However, there are other 
situations where adjusting for a covariate is more likely to 
result in a net increase in bias. The most obvious situation 
is adjusting for a covariate that is an intermediate variable 
(i.e., a mediator) on one of the paths through which the 
exposure causes the outcome [28, 29]. If that path con-
tributes substantially to the average causal effect of inter-
est, then adjusting for an intermediate covariate can in-
troduce considerable bias. For example, researchers ex-
amining the relationship between preterm birth and 
ADHD might choose to adjust for perinatal hypoxic-
ischemic events because they have been considered a po-
tential risk factor for negative cognitive outcomes [30]. 
However, adjusting for hypoxic-ischemic events would 
bias estimates of the average causal effect of preterm birth 
on ADHD if hypoxic-ischemic events mediate at least 
some of this effect. More subtly, adjusting for a covariate 
that is caused by an intermediate variable, but not itself 
on the causal path between the exposure and outcome, 
can introduce bias when that covariate shares an unmea-
sured common cause with the outcome [28]. In this sce-
nario, the degree of bias increases the stronger the rela-
tionship between the intermediate variable and the down-
stream covariate and the stronger the causal path through 
the intermediate variable [28]. In the above example, ad-
justing for low Apgar scores [16, 17, 20] could bias esti-
mates of the average causal effect of preterm birth on 
ADHD if low Apgar scores are caused by an intermediate 
variable (e.g., perinatal hypoxic-ischemic events) and also 
share other unmeasured common causes with child 
ADHD. Additionally, adjusting for a covariate that is an 
effect of the outcome can cause a net increase in bias, e.g., 
if the exposure has a direct effect (i.e., an effect not medi-
ated via the outcome) on the covariate.

The challenges involved in deciding which covariates 
(if any) to include extends to many other situations where 
adjusting for particular covariates can either reduce or in-
troduce bias, depending on the true causal structure [for 
examples, see 10, 31–33]. Thus, the potential inclusion of 
any covariate in a causal model requires careful consider-
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ation. DAGs can facilitate this consideration by illuminat-
ing the assumed underlying causal structure of the vari-
ables under study and thereby revealing the consequences 
of adjusting for particular covariates under a variety of 
assumptions. Further, the use of DAGs becomes even 
more helpful when relationships are more complicated, 
since attempts to apply simple rules without graphical jus-
tification often fail completely in such instances.

Of note, selecting covariates and interpreting causal 
models requires not only careful consideration but also ex-
pert knowledge. Observational data alone are not typically 
sufficient to determine whether any given DAG is the true 
DAG or whether any given causal model is correct [9]. For 
instance, in our example, the potential covariate maternal 
smoking during pregnancy may be associated with the out-
come ADHD because: the former causes the latter; both are 
caused by another, unmeasured variable (i.e., shared genet-
ic liability); or both. We cannot determine from the dataset 
alone which of these is true and must instead make assump-
tions regarding the relationship between these variables. 
(There are a few special cases (e.g., the area of instrumental 
inequalities and the emerging area of causal discovery) in 
which it has been proposed that a particular DAG or causal 
model can be tested or falsified using observational data 
alone [34–36].) In common practice, both DAGs and caus-
al models rely on the assumptions made by the researcher 
about the relationship of all measured and unmeasured 
variables in an analysis – assumptions that are typically 
based on previous research or knowledge of processes (e.g., 
biological processes) under investigation [9].

Despite the utility of causal DAGs, there are limitations 
that should be noted. To begin with, as illustrated in the 
above example, DAGs alone are insufficient to determine 
the direction or magnitude of bias introduced by adjust-
ment, or lack of adjustment, for a covariate. Additionally, 
DAGs cannot depict the influence of effect measure modi-
fication (e.g., gender as a moderator of the effect of preterm 
birth on ADHD) [37], although there have been attempts 
to extend DAGs to consider such features. Additional po-
tential limitations to the use of causal DAGs have been 
raised, including the possibility of oversimplification, but 
are beyond the scope of this commentary [38–40].

Conclusion

In observational psychiatric research, interest often lies 
in the causal relationship between an exposure and out-
come. To estimate this relationship, researchers fit a causal 
model (i.e., a model for the relationship between the expo-

sure and the outcome) to data. Researchers often include a 
variety of covariates in the model, typically in hopes of ob-
taining more accurate estimates of the causal effect of inter-
est. However, as we have discussed and illustrate in an ex-
ample, depending on the covariates’ true relationships to 
the exposure and outcome, adjustment for covariates can 
actually introduce new bias instead of, or in addition to, re-
ducing bias. Therefore, researchers should carefully con-
sider which covariates to include in a causal model rather 
than simply including all covariates potentially related to 
the exposure or the outcome. DAGs are a useful tool for 
clarifying how covariate adjustment might impact bias in 
an estimate. By allowing researchers to visualize the as-
sumptions required for a particular set of covariates to 
block all other paths between the exposure and outcome 
aside from the path of interest, DAGs allow researchers to 
contemplate whether those assumptions are reasonable.
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