179 research outputs found
Not only dominant, not only optic atrophy: expanding the clinical spectrum associated with OPA1 mutations
Background: Heterozygous mutations in OPA1 are a common cause of autosomal dominant optic atrophy, sometimes associated with extra-ocular manifestations. Few cases harboring compound heterozygous OPA1 mutations have been described manifesting complex neurodegenerative disorders in addition to optic atrophy. Results: We report here three patients: one boy showing an early-onset mitochondrial disorder with hypotonia, ataxia and neuropathy that was severely progressive, leading to early death because of multiorgan failure; two unrelated sporadic girls manifesting a spastic ataxic syndrome associated with peripheral neuropathy and, only in one, optic atrophy. Using a targeted resequencing of 132 genes associated with mitochondrial disorders, in two probands we found compound heterozygous mutations in OPA1: in the first a 5 nucleotide deletion, causing a frameshift and insertion of a premature stop codon (p.Ser64Asnfs*7), and a missense change (p.Ile437Met), which has recently been reported to have clinical impact; in the second, a novel missense change (p.Val988Phe) co-occurred with the p.Ile437Met substitution. In the third patient a homozygous mutation, c.1180G > A (p.Ala394Thr) in OPA1 was detected by a trio-based whole exome sequencing approach. One of the patients presented also variants in mitochondrial DNA that may have contributed to the peculiar phenotype. The deleterious effect of the identified missense changes was experimentally validated in yeast model. OPA1 level was reduced in available patients\u2019 biological samples, and a clearly fragmented mitochondrial network was observed in patients\u2019 fibroblasts. Conclusions: This report provides evidence that bi-allelic OPA1 mutations may lead to complex and severe multi-system recessive mitochondrial disorders, where optic atrophy might not represent the main feature
Clinical, biochemical, and genetic features associated with VARS2-related mitochondrial disease
In recent years, an increasing number of mitochondrial disorders have been associated with mutations in mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs), which are key enzymes of mitochondrial protein synthesis. Bi-allelic functional variants in VARS2, encoding the mitochondrial valyl tRNA-synthetase, were first reported in a patient with psychomotor delay and epilepsia partialis continua associated with an oxidative phosphorylation (OXPHOS) Complex I defect, before being described in a patient with a neonatal form of encephalocardiomyopathy. Here we provide a detailed genetic, clinical, and biochemical description of 13 patients, from nine unrelated families, harboring VARS2 mutations. All patients except one, who manifested with a less severe disease course, presented at birth exhibiting severe encephalomyopathy and cardiomyopathy. Features included hypotonia, psychomotor delay, seizures, feeding difficulty, abnormal cranial MRI, and elevated lactate. The biochemical phenotype comprised a combined Complex I and Complex IV OXPHOS defect in muscle, with patient fibroblasts displaying normal OXPHOS activity. Homology modeling supported the pathogenicity of VARS2 missense variants. The detailed description of this cohort further delineates our understanding of the clinical presentation associated with pathogenic VARS2 variants and we recommend that this gene should be considered in early-onset mitochondrial encephalomyopathies or encephalocardiomyopathies.Peer reviewe
Common variants in the regulative regions of GRIA1 and GRIA3 receptor genes are associated with migraine susceptibility
<p>Abstract</p> <p>Background</p> <p>Glutamate is the principal excitatory neurotransmitter in the central nervous system which acts by the activation of either ionotropic (AMPA, NMDA and kainate receptors) or G-protein coupled metabotropic receptors. Glutamate is widely accepted to play a major role in the path physiology of migraine as implicated by data from animal and human studies. Genes involved in synthesis, metabolism and regulation of both glutamate and its receptors could be, therefore, considered as potential candidates for causing/predisposing to migraine when mutated.</p> <p>Methods</p> <p>The association of polymorphic variants of <it>GRIA1</it>-<it>GRIA4 </it>genes which encode for the four subunits (GluR1-GluR4) of the alpha-amino-3- hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor for glutamate was tested in migraineurs with and without aura (MA and MO) and healthy controls.</p> <p>Results</p> <p>Two variants in the regulative regions of <it>GRIA1 </it>(rs2195450) and <it>GRIA3 </it>(rs3761555) genes resulted strongly associated with MA (P = 0.00002 and P = 0.0001, respectively), but not associated with MO, suggesting their role in cortical spreading depression. Whereas the rs548294 variant in <it>GRIA1 </it>gene showed association primarily with MO phenotype, supporting the hypothesis that MA and MO phenotypes could be genetically related. These variants modify binding sites for transcription factors altering the expression of <it>GRIA1 </it>and <it>GRIA3 </it>genes in different conditions.</p> <p>Conclusions</p> <p>This study represents the first genetic evidence of a link between glutamate receptors and migraine.</p
Search for composite and exotic fermions at LEP 2
A search for unstable heavy fermions with the DELPHI detector at LEP is
reported. Sequential and non-canonical leptons, as well as excited leptons and
quarks, are considered. The data analysed correspond to an integrated
luminosity of about 48 pb^{-1} at an e^+e^- centre-of-mass energy of 183 GeV
and about 20 pb^{-1} equally shared between the centre-of-mass energies of 172
GeV and 161 GeV. The search for pair-produced new leptons establishes 95%
confidence level mass limits in the region between 70 GeV/c^2 and 90 GeV/c^2,
depending on the channel. The search for singly produced excited leptons and
quarks establishes upper limits on the ratio of the coupling of the excited
fermio
Novel NDUFA12 variants are associated with isolated complex I defect and variable clinical manifestation.
Isolated biochemical deficiency of mitochondrial complex I is the most frequent signature amongst mitochondrial diseases and is associated with a wide variety of clinical symptoms. Leigh syndrome represents the most frequent neuroradiological finding in patients with complex I defect and >80 monogenic causes have been involved in the disease. In this report, we describe 7 patients from four unrelated families harbouring novel NDUFA12 variants, 6 of them presenting with Leigh syndrome. Molecular genetic characterization was performed using next generation sequencing combined with the Sanger method. Biochemical and protein studies were achieved by enzymatic activities, blue native gel electrophoresis and Western blotting. All patients displayed novel homozygous mutations in the NDUFA12 gene leading to the virtual absence of the corresponding protein. Surprisingly, despite in none of the analyzed patients NDUFA12 protein was detected, they present a different onset and clinical course of the disease. Our report expands the array of genetic alterations in NDUFA12 and underlines phenotype variability associated with NDUFA12 defect. This article is protected by copyright. All rights reserved
Investigation of the splitting of quark and gluon jets
The splitting processes in identified quark and gluon jets are investigated using longitudinal and transverse observables. The jets are selected from symmetric three-jet events measured in Z decays with the Delphi detector in 1991-1994. Gluon jets are identified using heavy quark anti-tagging. Scaling violations in identified gluon jets are observed for the first time. The scale energy dependence of the gluon fragmentation function is found to be about two times larger than for the corresponding quark jets, consistent with the QCD expectation TeX . The primary splitting of gluons and quarks into subjets agrees with fragmentation models and, for specific regions of the jet resolution TeX , with NLLA calculations. The maximum of the ratio of the primary subjet splittings in quark and gluon jets is TeX . Due to non-perturbative effects, the data are below the expectation at small TeX . The transition from the perturbative to the non-perturbative domain appears at smaller TeX for quark jets than for gluon jets. Combined with the observed behaviour of the higher rank splittings, this explains the relatively small multiplicity ratio between gluon and quark jets
Measurement of the Quark and Gluon Fragmentation Functions in Hadronic Decays
The fragmentation functions and multiplicities in and light quark events are compared. The measured transverse and longitudinal components of the fragmentation function allow the gluon fragmentation function to be evaluated
Search for Neutral Heavy Leptons Produced in Z Decays
Weak isosinglet Neutral Heavy Leptons () have been searched for using data collected by the DELPHI detector corresponding to hadronic~Z decays at LEP1. Four separate searches have been performed, for short-lived production giving monojet or acollinear jet topologies, and for long-lived giving detectable secondary vertices or calorimeter clusters. No indication of the existence of these particles has been found, leading to an upper limit for the branching ratio Z of about at 95\% confidence level for masses between 3.5 and 50 GeV/. Outside this range the limit weakens rapidly with the mass. %Special emphasis has been given to the search for monojet--like topologies. One event %has passed the selection, in agreement with the expectation from the reaction: %. The results are also interpreted in terms of limits for the single production of excited neutrinos
- …