150 research outputs found

    Hippocampus size predicts fluid intelligence in musically trained people

    Get PDF
    Introduction Neurogenesis persists in the human adult hippocampus1 and the survival of new progenitor cells is enhanced by learning activities2. Using the musician's brain as a model for cortical plasticity, musical training induced functional adaptations of the hippocampus have been demonstrated3,4. Furthermore, there is evidence for a positive correlation between hippocampus size and fluid intelligence5, encompassing aspects of attention, working memory and executive functions6. Previous data strongly suggest that musical training impacts on such higher order cognitive functions7,14. Following these findings we hypothesize a linkage between hippocampus size and fluid intelligence in musically trained people. Methods Participants: Three groups - piano experts (E, n=20), piano amateurs (A, n=20) and nonmusicians (N, n=19), matched by age and gender. Task: short version of the Raven's Test, Advanced Progressive Matrices (time limit 15 minutes). Structural MRI: manual segmentation8,9,10,11,12 of left (LH) and right (RH) hippocampi done by a single investigator blinded for group belonging and ID of each subject, software MRIcroN13 (Fig. 1) Statistics: one-way ANOVAs on Raven performance and hippocampus volume; Fisher's r to z transformations; robust multiple regression models for each hemisphere: (i) to predict Raven performance by hippocampus volume and (ii) to test whether this prediction is modulated by the factor of musical training. Robust regression analysis (implemented by statistical software R) represents a valid alternative to least square regression analysis when data is potentially contaminated by single influential observations. Results One way ANOVAs with three levels of expertise: no main effects of Expertise neither in Raven's Test performance nor in hippocampus volumes. No main effect of Lateralization (Fig. 2). Pooling of musicians (M=A+E) justified as no difference in predictive power exists between A and E, neither in the left nor in the right hemisphere. LH: z=0.84, p=0.401, RH: z=-0.45, p=0.623. Robust multiple regression analysis testing the prediction of Raven's performance by hippocampus size, modulated by musicianship (two levels: N, M(A+E)): - Left hemisphere: Significant interaction (t=2.221, p=.030), revealing that prediction of Raven's performance by hippocampus size is modulated by musical training: N (beta =.03) and M (beta =.46). - Right hemisphere: Significant interaction (t=2.003, p=.050), revealing that prediction of Raven's performance by hippocampus size is modulated by musical training: N (beta =.01) and M (beta =.38). Conclusion Hippocampus size significantly predicts fluid intelligence performance in musically experienced subjects but not in musically naïve ones. This result represents a striking additional corroboration of musicians' brain plasticity. It seems highly plausible that a longlasting complex activity like musical instrumental training from childhood into adulthood induced an increase in hippocampus size associated with enhanced logical reasoning. Further research is needed to investigate cognitive functions favored by musical training and possible consequent impact on the development of peculiar brain structures. NB: This research was performed within the framework of an ongoing research project performed by Clara James (principal investigator) and postdoc collaborator Mathias Oechslin entitled "Behavioral, neuro-functional and neuro-anatomical correlates of experience dependant music perception" (FNS 100014_125050). This research project investigates brain adaptations in correlation with changes of behavior in young adults with varying musical experience, anticipating gradual changes in behavior, brain functioning and brain structure with degree of musical aptitude. In this frame, I did the data collection of hippocampus volumes and analyzed the results in correlation with a literature research on the subject

    Enhanced autophagy contributes to excitotoxic lesions in a rat model of preterm brain injury.

    Get PDF
    Cystic periventricular leukomalacia is commonly diagnosed in premature infants, resulting from severe hypoxic-ischemic white matter injury, and also involving some grey matter damage. Very few is known concerning the cell death pathways involved in these types of premature cerebral lesions. Excitotoxicity is a predominant mechanism of hypoxic-ischemic injury in the developing brain. Concomitantly, it has been recently shown that autophagy could be enhanced in excitotoxic conditions switching this physiological intracellular degradation system to a deleterious process. We here investigated the role of autophagy in a validated rodent model of preterm excitotoxic brain damage mimicking in some aspects cystic periventricular leukomalacia. An excitotoxic lesion affecting periventricular white and grey matter was induced by injecting ibotenate, a glutamate analogue, in the subcortical white matter (subcingulum area) of five-day old rat pups. Ibotenate enhanced autophagy in rat brain dying neurons at 24 h as shown by increased presence of autophagosomes (increased LC3-II and LC3-positive dots) and enhanced autophagic degradation (SQSTM1 reduction and increased number and size of lysosomes (LAMP1- and CATHEPSIN B-positive vesicles)). Co-injection of the pharmacological autophagy inhibitor 3-methyladenine prevented not only autophagy induction but also CASPASE-3 activation and calpain-dependent cleavage of SPECTRIN 24 h after the insult, thus providing a strong reduction of the long term brain injury (16 days after ibotenate injection) including lateral ventricle dilatation, decreases in cerebral tissue volume and in subcortical white matter thickness. The autophagy-dependent neuroprotective effect of 3-methyladenine was confirmed in primary cortical neuronal cultures using not only pharmacological but also genetic autophagy inhibition of the ibotenate-induced autophagy. Strategies inhibiting autophagy could then represent a promising neuroprotective approach in the context of severe preterm brain injuries

    Computing the first eigenpair of the p-Laplacian via inverse iteration of sublinear supersolutions

    Full text link
    We introduce an iterative method for computing the first eigenpair (λp,ep)(\lambda_{p},e_{p}) for the pp-Laplacian operator with homogeneous Dirichlet data as the limit of (μq,uq)(\mu_{q,}u_{q}) as qpq\rightarrow p^{-}, where uqu_{q} is the positive solution of the sublinear Lane-Emden equation Δpuq=μquqq1-\Delta_{p}u_{q}=\mu_{q}u_{q}^{q-1} with same boundary data. The method is shown to work for any smooth, bounded domain. Solutions to the Lane-Emden problem are obtained through inverse iteration of a super-solution which is derived from the solution to the torsional creep problem. Convergence of uqu_{q} to epe_{p} is in the C1C^{1}-norm and the rate of convergence of μq\mu_{q} to λp\lambda_{p} is at least O(pq)O(p-q). Numerical evidence is presented.Comment: Section 5 was rewritten. Jed Brown was added as autho

    Fine sediment reduces vertical migrations of Gammarus pulex (Crustacea: Amphipoda) in response to surface water loss

    Get PDF
    Surface and subsurface sediments in river ecosystems are recognized as refuges that may promote invertebrate survival during disturbances such as floods and streambed drying. Refuge use is spatiotemporally variable, with environmental factors including substrate composition, in particular the proportion of fine sediment (FS), affecting the ability of organisms to move through interstitial spaces. We conducted a laboratory experiment to examine the effects of FS on the movement of Gammarus pulex Linnaeus (Crustacea: Amphipoda) into subsurface sediments in response to surface water loss. We hypothesized that increasing volumes of FS would impede and ultimately prevent individuals from migrating into the sediments. To test this hypothesis, the proportion of FS (1–2 mm diameter) present within an open gravel matrix (4–16 mm diameter) was varied from 10 to 20% by volume in 2.5% increments. Under control conditions (0% FS), 93% of individuals moved into subsurface sediments as the water level was reduced. The proportion of individuals moving into the subsurface decreased to 74% at 10% FS, and at 20% FS no individuals entered the sediments, supporting our hypothesis. These results demonstrate the importance of reducing FS inputs into river ecosystems and restoring FS-clogged riverbeds, to promote refuge use during increasingly common instream disturbances

    Real-time high-resolution heterodyne-based measurements of spectral dynamics in fibre lasers

    Get PDF
    Conventional tools for measurement of laser spectra (e.g. optical spectrum analysers) capture data averaged over a considerable time period. However, the generation spectrum of many laser types may involve spectral dynamics whose relatively fast time scale is determined by their cavity round trip period, calling for instrumentation featuring both high temporal and spectral resolution. Such real-time spectral characterisation becomes particularly challenging if the laser pulses are long, or they have continuous or quasi-continuous wave radiation components. Here we combine optical heterodyning with a technique of spatiooral intensity measurements that allows the characterisation of such complex sources. Fast, round-trip-resolved spectral dynamics of cavity-based systems in real-time are obtained, with temporal resolution of one cavity round trip and frequency resolution defined by its inverse (85 ns and 24 MHz respectively are demonstrated). We also show how under certain conditions for quasi-continuous wave sources, the spectral resolution could be further increased by a factor of 100 by direct extraction of phase information from the heterodyned dynamics or by using double time scales within the spectrogram approach

    Direct observations of the effect of fine sediment deposition on the vertical movement of Gammarus pulex (Amphipoda: Gammaridae) during substratum drying

    Get PDF
    Benthic macroinvertebrates inhabit the streambed sediments of temporary streams during drying events. Fine sediment (< 2 mm in diameter) deposition and clogging of interstitial pathways reduces the connectivity between benthic and subsurface habitats, potentially inhibiting macroinvertebrate vertical movements. Direct observations within subsurface sediments are, however, inherently difficult. As a result, confirmation of macroinvertebrate vertical movement, and the effect of fine sediment, is limited. We used laboratory mesocosms containing transparent gravel sized particles (10–15 mm) to facilitate the direct observation and tracking of vertical movements by Gammarus pulex in response to water level reduction and sedimentation. Seven sediment treatments comprised two fine sediment fractions (small: 0.125–0.5 mm, coarse sand: 0.5–1 mm) deposited onto the surface of the substrate, and a control treatment where no fine sediment was applied. We found that G. pulex moved into the subsurface gravel sediments in response to drying, but their ability to remain submerged during water level reduction was impeded by fine sediment deposition. In particular deposition of the coarser sand fraction clogged the sediment surface, limiting vertical movements. Our results highlight the potential effect of sedimentation on G. pulex resistance to drying events in streams

    Newly diagnosed rheumatic heart disease among indigenous populations in the Pacific

    Get PDF
    Objectives Rheumatic heart disease (RHD) remains the leading acquired heart disease in the young worldwide. We aimed at assessing outcomes and influencing factors in the contemporary era. Methods Hospital-based cohort in a high-income island nation where RHD remains endemic and the population is captive. All patients admitted with newly diagnosed RHD according to World Heart Federation echocardiographic criteria were enrolled (2005–2013). The incidence of major cardiovascular events (MACEs) including heart failure, peripheral embolism, stroke, heart valve intervention and cardiovascular death was calculated, and their determinants identified. Results Of the 396 patients, 43.9% were male with median age 18 years (IQR 10–40)). 127 (32.1%) patients presented with mild, 131 (33.1%) with moderate and 138 (34.8%) with severe heart valve disease. 205 (51.8%) had features of acute rheumatic fever. 106 (26.8%) presented with at least one MACE. Among the remaining 290 patients, after a median follow-up period of 4.08 (95% CI 1.84 to 6.84) years, 7 patients (2.4%) died and 62 (21.4%) had a first MACE. The annual incidence of first MACE and of heart failure were 59.05‰ (95% CI 44.35 to 73.75) and 29.06‰ (95% CI 19.29 to 38.82), respectively. The severity of RHD at diagnosis (moderate vs mild HR 3.39 (0.95 to 12.12); severe vs mild RHD HR 10.81 (3.11 to 37.62), p<0.001) and ongoing secondary prophylaxis at follow-up (HR 0.27 (0.12 to 0.63), p=0.01) were the two most influential factors associated with MACE. Conclusions Newly diagnosed RHD is associated with poor outcomes, mainly in patients with moderate or severe valve disease and no secondary prophylaxis

    Recent Emergence of Dengue Virus Serotype 4 in French Polynesia Results from Multiple Introductions from Other South Pacific Islands

    Get PDF
    BACKGROUND: Infection by dengue virus (DENV) is a major public health concern in hundreds of tropical and subtropical countries. French Polynesia (FP) regularly experiences epidemics that initiate, or are consecutive to, DENV circulation in other South Pacific Island Countries (SPICs). In January 2009, after a decade of serotype 1 (DENV-1) circulation, the first cases of DENV-4 infection were reported in FP. Two months later a new epidemic emerged, occurring about 20 years after the previous circulation of DENV-4 in FP. In this study, we investigated the epidemiological and molecular characteristics of the introduction, spread and genetic microevolution of DENV-4 in FP. METHODOLOGY/PRINCIPAL FINDINGS: Epidemiological data suggested that recent transmission of DENV-4 in FP started in the Leeward Islands and this serotype quickly displaced DENV-1 throughout FP. Phylogenetic analyses of the nucleotide sequences of the envelope (E) gene of 64 DENV-4 strains collected in FP in the 1980s and in 2009-2010, and some additional strains from other SPICs showed that DENV-4 strains from the SPICs were distributed into genotypes IIa and IIb. Recent FP strains were distributed into two clusters, each comprising viruses from other but distinct SPICs, suggesting that emergence of DENV-4 in FP in 2009 resulted from multiple introductions. Otherwise, we observed that almost all strains collected in the SPICs in the 1980s exhibit an amino acid (aa) substitution V287I within domain I of the E protein, and all recent South Pacific strains exhibit a T365I substitution within domain III. CONCLUSIONS/SIGNIFICANCE: This study confirmed the cyclic re-emergence and displacement of DENV serotypes in FP. Otherwise, our results showed that specific aa substitutions on the E protein were present on all DENV-4 strains circulating in SPICs. These substitutions probably acquired and subsequently conserved could reflect a founder effect to be associated with epidemiological, geographical, eco-biological and social specificities in SPICs

    Benthic and Hyporheic Macroinvertebrate Distribution Within the Heads and Tails of Riffles During Baseflow Conditions

    Get PDF
    The distribution of lotic fauna is widely acknowledged to be patchy reflecting the interaction between biotic and abiotic factors. In an in-situ field study, the distribution of benthic and hyporheic invertebrates in the heads (downwelling) and tails (upwelling) of riffles were examined during stable baseflow conditions. Riffle heads were found to contain a greater proportion of interstitial fine sediment than riffle tails. Significant differences in the composition of benthic communities were associated with the amount of fine sediment. Riffle tail habitats supported a greater abundance and diversity of invertebrates sensitive to fine sediment such as EPT taxa. Shredder feeding taxa were more abundant in riffle heads suggesting greater availability of organic matter. In contrast, no significant differences in the hyporheic community were recorded between riffle heads and tails. We hypothesise that clogging of hyporheic interstices with fine sediments may have resulted in the homogenization of the invertebrate community by limiting faunal movement into the hyporheic zone at both the riffle head and tail. The results suggest that vertical hydrological exchange significantly influences the distribution of fine sediment and macroinvertebrate communities at the riffle scale
    corecore