130 research outputs found

    Integrating mitochondrial translation into the cellular context.

    Get PDF
    Mitochondrial-encoded subunits of the oxidative phosphorylation system assemble with nuclear-encoded subunits into enzymatic complexes. Recent findings showed that mitochondrial translation is linked to other mitochondrial functions, as well as to cellular processes. The supply of mitochondrial- encoded proteins is coordinated by the coupling of mitochondrial protein synthesis with assembly of respiratory chain complexes. MicroRNAs imported from the cytoplasm into mitochondria were, surprisingly, found to act as regulators of mitochondrial translation. In turn, translation in mitochondria controls cellular proliferation, and mitochondrial ribosomal subunits contribute to the cytoplasmic stress response. Thus, translation in mitochondria is apparently integrated into cellular processes

    Mitochondrial protein synthesis adapts to influx of nuclear-encoded protein.

    Get PDF
    Mitochondrial ribosomes translate membrane integral core subunits of the oxidative phosphorylation system encoded by mtDNA. These translation products associate with nuclear-encoded, imported proteins to form enzyme complexes that produce ATP. Here, we show that human mitochondrial ribosomes display translational plasticity to cope with the supply of imported nuclear-encoded subunits. Ribosomes expressing mitochondrial-encoded COX1 mRNA selectively engage with cytochrome c oxidase assembly factors in the inner membrane. Assembly defects of the cytochrome c oxidase arrest mitochondrial translation in a ribosome nascent chain complex with a partially membrane-inserted COX1 translation product. This complex represents a primed state of the translation product that can be retrieved for assembly. These findings establish a mammalian translational plasticity pathway in mitochondria that enables adaptation of mitochondrial protein synthesis to the influx of nuclear-encoded subunits

    COA6 facilitates cytochrome c oxidase biogenesis as thiol-reductase for copper metallochaperones in mitochondria.

    No full text
    The mitochondrial cytochrome c oxidase, the terminal enzyme of the respiratory chain, contains heme and copper centers for electron transfer. The conserved COX2 subunit contains the CuA site, a binuclear copper center. The copper chaperones SCO1, SCO2, and COA6 are required for CuA center formation. Loss of function of these chaperones and the concomitant cytochrome c oxidase deficiency cause severe human disorders. Here we analyzed the molecular function of COA6 and the consequences of COA6 deficiency for mitochondria. Our analyses show that loss of COA6 causes combined complex I and complex IV deficiency and impacts membrane potential driven protein transport across the inner membrane. We demonstrate that COA6 acts as a thiol-reductase to reduce disulphide bridges of critical cysteine residues in SCO1 and SCO2. Cysteines within the CX3CXNH domain of SCO2 mediate its interaction with COA6 but are dispensable for SCO2-SCO1 interaction. Our analyses define COA6 as thiol-reductase, which is essential for CuA biogenesis

    An in vitro system to silence mitochondrial gene expression

    Get PDF
    The human mitochondrial genome encodes thirteen core subunits of the oxidative phosphorylation system, and defects in mitochondrial gene expression lead to severe neuromuscular disorders. However, the mech- anisms of mitochondrial gene expression remain poorly understood due to a lack of experimental ap- proaches to analyze these processes. Here, we present an in vitro system to silence translation in purified mitochondria. In vitro import of chemically synthesized precursor-morpholino hybrids allows us to target translation of individual mitochondrial mRNAs. By applying this approach, we conclude that the bicistronic, overlapping ATP8/ATP6 transcript is translated through a single ribosome/mRNA engagement. We show that recruitment of COX1 assembly factors to translating ribosomes depends on nascent chain formation. By defining mRNA-specific interactomes for COX1 and COX2, we reveal an unexpected function of the cytosolic oncofetal IGF2BP1, an RNA-binding protein, in mitochondrial translation. Our data provide insight into mitochondrial translation and innovative strategies to investigate mitochondrial gene expression

    Evaluation of Etiquette Strategies to Adapt Feedback In Affect-Aware Tutoring

    Full text link
    The purpose of this research is to investigate how to mitigate user frustration and improve task performancein the context of human-computer interaction (HCI). Even though user frustration plays a role in manyaspects of HCI and studies have looked into the consequences of frustration in various fields, the ways tomitigate frustration are less deeply examined. Once the system has the ability to understand and includeuser emotions as factors in HCI, the interaction between the user and the computer system could be adaptedif the computers are able to modify its behavior with users in appropriate ways to further joint performance.Specifically, a preliminary study was conducted to explore the task performance, motivation, andconfidence implications of changing the interaction between the human and the computer via differentetiquette strategies. Participants solved a total of twenty mathematics problems under different frustrationcondition with feedback given in different styles of etiquette. Changing etiquette strategies in tutoring ledto changes in performance, motivation, and confidence. The most effective etiquette strategies changedwhen users were frustrated. This work provides the foundation for the design of adaptive intelligenttutoring system based on etiquette strategies.Copyright Human Factors and Ergonomics Society 2016. Posted with permission.</div

    Cooperation between COA6 and SCO2 in COX2 maturation during cytochrome c oxidase assembly links two mitochondrial cardiomyopathies.

    Get PDF
    Three mitochondria-encoded subunits form the catalytic core of cytochrome c oxidase, the terminal enzyme of the respiratory chain. COX1 and COX2 contain heme and copper redox centers, which are integrated during assembly of the enzyme. Defects in this process lead to an enzyme deficiency and manifest as mitochondrial disorders in humans. Here we demonstrate that COA6 is specifically required for COX2 biogenesis. Absence of COA6 leads to fast turnover of newly synthesized COX2 and a concomitant reduction in cytochrome c oxidase levels. COA6 interacts transiently with the copper-containing catalytic domain of newly synthesized COX2. Interestingly, similar to the copper metallochaperone SCO2, loss of COA6 causes cardiomyopathy in humans. We show that COA6 and SCO2 interact and that corresponding pathogenic mutations in each protein affect complex formation. Our analyses define COA6 as a constituent of the mitochondrial copper relay system, linking defects in COX2 metallation to cardiac cytochrome c oxidase deficiency

    Oms1 associates with cytochrome c oxidase assembly intermediates to stabilize newly synthesized Cox1.

    No full text
    The mitochondrial cytochromecoxidase assembles in the inner membrane from subunits of dual genetic origin. The assembly process of the enzyme is initiated by membrane insertion of the mitochondria-encoded Cox1 subunit. During complex maturation, transient assembly intermediates, consisting of structural subunits and specialized chaperone-like assembly factors, are formed. In addition, cofactors such as heme and copper have to be inserted into the nascent complex. To regulate the assembly process, the availability of Cox1 is under control of a regulatory feedback cycle, in which translation of the COX1 mRNA is stalled when assembly intermediates of Cox1 accumulate through inactivation of the translational activator Mss51. Here we have isolated a cytochromecoxidase assembly intermediate in preparatory scale fromcoa1Δmutant cells using Mss51 as a bait. We demonstrate that at this stage of assembly the complex has not yet incorporated the heme a cofactors. Using quantitative mass spectrometry, we defined the protein composition of the assembly intermediate and unexpectedly identified the putative methyltransferase Oms1 as a constituent. Our analyses show that Oms1 participates in cytochromecoxidase assembly by stabilizing newly synthesized Cox1

    Learning at large conferences:from the 'sage on the stage' to contemporary models of learning

    Get PDF
    AimTo explore and evaluate the affordances of a flipped classroom model applied to a research paper session within the professional development opportunity of a large conference setting.MethodAuthors were invited to present their research papers in a flipped classroom presentation format at two large, multi-national conferences. Before the session, authors and moderators met online to clarify features of the session, and preparation of the material. The research material was then posted online before the conference, to allow access by meeting attendees. During the sessions, moderators encouraged the audience to actively participate. An evaluation form was collected from the audience at the end of each session.ResultsParticipants found the session valuable, and appreciated the opportunity to engage in a meaningful dialogue with colleagues. However, the majority of the audience did not access the materials in advance. Lack of time, or technology-related issues were mentioned as potential challenges to such format.ConclusionIn the context of a large conference, a 'flipped session' format can facilitate active learning and a participatory culture of inquiry. However, to change the nature of how individuals learn collaboratively at large conferences means a change in the culture of continuous professional learning

    Beyond Robotic Wastelands of Time: Abandoned Pedagogical Agents and New Pedalled Pedagogies

    Get PDF
    Chatbots, known as pedagogical agents in educational settings, have a long history of use, beginning with Alan Turing’s work. Since then online chatbots have become embedded into the fabric of technology. Yet understandings of these technologies are inchoate and often untheorised. Integration of chatbots into educational settings over the past five years suggests an increase in interest in the ways in which chatbots might be adopted and adapted for teaching and learning. This article draws on historical literature and theories that to date have largely been ignored in order to (re)contextualise two studies that used responsive evaluation to examine the use of pedagogical agents in education. Findings suggest that emotional interactions with pedagogical agents are intrinsic to a user’s sense of trust, and that truthfulness, personalisation and emotional engagement are vital when using pedagogical agents to enhance online learning. Such findings need to be considered in the light of ways in which notions of learning are being redefined in the academy and the extent to which new literacies and new technologies are being pedalled as pedagogies in ways that undermine what higher education is, is for, and what learning means

    Improving Working Conditions to Promote Worker Safety, Health and Wellbeing for Low-Wage Workers: The Workplace Organizational Health Study

    Get PDF
    This paper addresses a significant gap in the literature by describing a study that tests the feasibility and efficacy of an organizational intervention to improve working conditions, safety, and wellbeing for low-wage food service workers. The Workplace Organizational Health Study tests the hypothesis that an intervention targeting the work organization and environment will result in improvements in workers’ musculoskeletal disorders and wellbeing. This ongoing study is being conducted in collaboration with a large food service company. Formative evaluation was used to prioritize outcomes, assess working conditions, and define essential intervention elements. The theory-driven intervention is being evaluated in a proof-of-concept trial, conducted to demonstrate feasibility and potential efficacy using a cluster randomized design. Ten worksites were randomly assigned to intervention or control conditions. The 13-month intervention uses a comprehensive systems approach to improve workplace policies and practices. Using principles of participatory engagement, the intervention targets safety and ergonomics; work intensity; and job enrichment. The evaluation will provide a preliminary assessment of estimates of the intervention effect on targeted outcomes and inform understanding of the intervention implementation across worksites. This study is expected to provide insights on methods to improve working conditions in support of the safety and wellbeing of low-wage workers
    • 

    corecore