2,070 research outputs found

    Validating a method for the estimate of gait spatio-temporal parameters with IMUs data on healthy and impaired people from two clinical centers

    Get PDF
    Instrumented gait analysis offers objective clinical outcome assessment. To this purpose, inertial measurement units (IMUs) represent nowadays a very effective solution due to their limited cost, ease of use and improved wearability. The aim of this study was to apply a well-documented IMU-based method to measure gait spatio-temporal parameters in a large number of healthy and gait-impaired subjects, and evaluate its robustness and validity across two clinical centers. Overall, the results of this work represent a robust and reliable foundation for the clinical use of the proposed IMU based method for gait parameters estimation

    A method for gait events detection based on low spatial resolution pressure insoles data

    Get PDF
    The accurate identification of initial and final foot contacts is a crucial prerequisite for obtaining a reliable estimation of spatio-temporal parameters of gait. Well-accepted gold standard techniques in this field are force platforms and instrumented walkways, which provide a direct measure of the foot–ground reaction forces. Nonetheless, these tools are expensive, non-portable and restrict the analysis to laboratory settings. Instrumented insoles with a reduced number of pressure sensing elements might overcome these limitations, but a suitable method for gait events identification has not been adopted yet. The aim of this paper was to present and validate a method aiming at filling such void, as applied to a system including two insoles with 16 pressure sensing elements (element area = 310 mm2), sampling at 100 Hz. Gait events were identified exploiting the sensor redundancy and a cluster-based strategy. The method was tested in the laboratory against force platforms on nine healthy subjects for a total of 801 initial and final contacts. Initial and final contacts were detected with low average errors of (about 20 ms and 10 ms, respectively). Similarly, the errors in estimating stance duration and step duration averaged 20 ms and <10 ms, respectively. By selecting appropriate thresholds, the method may be easily applied to other pressure insoles featuring similar requirements

    Use of a Remote Eye-Tracker for the Analysis of Gaze during Treadmill Walking and Visual Stimuli Exposition

    Get PDF
    The knowledge of the visual strategies adopted while walking in cognitively engaging environments is extremely valuable. Analyzing gaze when a treadmill and a virtual reality environment are used as motor rehabilitation tools is therefore critical. Being completely unobtrusive, remote eye-trackers are the most appropriate way to measure the point of gaze. Still, the point of gaze measurements are affected by experimental conditions such as head range of motion and visual stimuli. This study assesses the usability limits and measurement reliability of a remote eye-tracker during treadmill walking while visual stimuli are projected. During treadmill walking, the head remained within the remote eye-tracker workspace. Generally, the quality of the point of gaze measurements declined as the distance from the remote eye-tracker increased and data loss occurred for large gaze angles. The stimulus location (a dot-target) did not influence the point of gaze accuracy, precision, and trackability during both standing and walking. Similar results were obtained when the dot-target was replaced by a static or moving 2D target and “region of interest” analysis was applied. These findings foster the feasibility of the use of a remote eye-tracker for the analysis of gaze during treadmill walking in virtual reality environments

    A canine gait analysis protocol for back movement assessment in german shepherd dogs

    Get PDF
    Objective-To design and test a motion analysis protocol for the gait analysis of adult German Shepherd (GS) dogs with a focus in the analyses of their back movements. Animals-Eight clinically healthy adult large-sized GS dogs (age, 4 ± 1.3 years; weight, 38.8 ± 4.2 kg). Procedures-A six-camera stereo-photogrammetric system and two force platforms were used for data acquisition. Experimental acquisition sessions consisted of static and gait trials. During gait trials, each dog walked along a 6 m long walkway at self-selected speed and a total of six gait cycles were recorded. Results-Grand mean and standard deviation of ground reaction forces of fore and hind limbs are reported. Spatial-temporal parameters averaged over gait cycles and subjects, their mean, standard deviation and coefficient of variance are analyzed. Joint kinematics for the hip, stifle and tarsal joints and their average range of motion (ROM) values, and their 95% Confidence Interval (CI) values of kinematics curves are reported. Conclusions and Clinical Relevance-This study provides normative data of healthy GS dogs to form a preliminary basis in the analysis of the spatial-temporal parameters, kinematics and kinetics during quadrupedal stance posture and gait. Also, a new back movement protocol enabling a multi-segment back model is provided. Results show that the proposed gait analysis protocol may become a useful and objective tool for the evaluation of canine treatment with special focus on the back movement

    A method for gait events detection based on low spatial resolution pressure insoles data

    Get PDF
    The accurate identification of initial and final foot contacts is a crucial prerequisite for obtaining a reliable estimation of spatio-temporal parameters of gait. Well-accepted gold standard techniques in this field are force platforms and instrumented walkways, which provide a direct measure of the foot–ground reaction forces. Nonetheless, these tools are expensive, non-portable and restrict the analysis to laboratory settings. Instrumented insoles with a reduced number of pressure sensing elements might overcome these limitations, but a suitable method for gait events identification has not been adopted yet. The aim of this paper was to present and validate a method aiming at filling such void, as applied to a system including two insoles with 16 pressure sensing elements (element area = 310 mm2), sampling at 100 Hz. Gait events were identified exploiting the sensor redundancy and a cluster-based strategy. The method was tested in the laboratory against force platforms on nine healthy subjects for a total of 801 initial and final contacts. Initial and final contacts were detected with low average errors of (about 20 ms and 10 ms, respectively). Similarly, the errors in estimating stance duration and step duration averaged 20 ms and <10 ms, respectively. By selecting appropriate thresholds, the method may be easily applied to other pressure insoles featuring similar requirements

    Visuomotor Integration for Coupled Hand Movements in Healthy Subjects and Patients With Stroke

    Get PDF
    Many studies have investigated the bilateral upper limb coordination during movements under different motor and visual conditions. Bilateral training has also been proposed as an effective rehabilitative protocol for patients with stroke. However, the factors influencing in-phase vs. anti-phase coupling have not yet been fully explored. In this study, we used a motion capture device based on two infrared distance sensors to assess whether the up and down oscillation of the less functional hand (the non-dominant one in healthy younger and older subjects and the paretic one in patients with stroke) could be influenced by in-phase or anti-phase coupling of the more functional hand and by visual feedback. Similar patterns were found between single hand movements and in-phase coupled movements, whereas anti-phase coupled movements were less ample, less sinusoidal, but more frequent. These features were particularly evident for patients with stroke who showed a reduced waveform similarity of bilateral movements in all conditions but especially for anti-phase movements under visual control. These results indicate that visuomotor integration in patients with stroke could be less effective than in healthy subjects, probably because of the attentional overload required when moving the two limbs in an alternating fashion

    A wearable multi-sensor system for real world gait analysis

    Get PDF
    Gait analysis is commonly performed in standardized environments, but there is a growing interest in assessing gait also in ecological conditions. In this regard, an important limitation is the lack of an accurate mobile gold standard for validating any wearable system, such as continuous monitoring devices mounted on the trunk or wrist. This study therefore deals with the development and validation of a new wearable multi-sensor-based system for digital gait assessment in free-living conditions. In particular, results obtained from five healthy subjects during lab-based and real-world experiments were presented and discussed. The in-lab validation, which assessed the accuracy and reliability of the proposed system, shows median percentage errors smaller than 2% in the estimation of spatio-temporal parameters. The system also proved to be easy to use, comfortable to wear and robust during the out-of-lab acquisitions, showing its feasibility for free-living applications
    • …
    corecore