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Abstract— Gait analysis is commonly performed in 

standardized environments, but there is a growing interest in 

assessing gait also in ecological conditions. In this regard, an 

important limitation is the lack of an accurate mobile gold 

standard for validating any wearable system, such as 

continuous monitoring devices mounted on the trunk or wrist. 

This study therefore deals with the development and validation 

of a new wearable multi-sensor-based system for digital gait 

assessment in free-living conditions. In particular, results 

obtained from five healthy subjects during lab-based and real-

world experiments were presented and discussed. The in-lab 

validation, which assessed the accuracy and reliability of the 

proposed system, shows median percentage errors smaller than 

2% in the estimation of spatio-temporal parameters. The 

system also proved to be easy to use, comfortable to wear and 

robust during the out-of-lab acquisitions, showing its feasibility 

for free-living applications. 

I. INTRODUCTION 

Recent literature has shown the relevance of characterising 

an individual’s mobility in real-world conditions for a 

complete assessment of typical motor abilities [1,2]. This 

requires the use of activity monitors, e.g. devices including a 

single inertial measurement unit (IMU), that can be used 

without causing discomfort thanks to its limited invasivity. 

In this sense, the most convenient body positionings are 

trunk and wrist [3]. However, those locations present 

criticalities for the analysis of gait in terms of reliability, 

since the farther from the contact point the IMU is placed, 

the more difficult the estimation of gait-related parameters 

is. In this respect, the trunk is far from the ground but near to 

the centre of mass while the wrist is far from both ground 

and centre of mass. Although the scientific community is 

actively working on developing and improving algorithms 

for the above-mentioned solutions, algorithms validation is 

still performed in the laboratory while capturing simple gait 

tasks in spatially and temporally limited observation 

windows [4,5]. Testing single-sensor algorithms outside the 

laboratory would require a wearable system that is robust 

and accurate enough to be used as reference in validating 

other wearable technologies, i.e. a mobile gold standard 
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(mGS). Ideally, a mGS system should include sensors that 

are able to directly detect the foot-ground contact. Moreover, 

it should be based on an optimal sensor’s redundant 
configuration for drift reduction, enable statistical accuracy 

improvement and, also, be easy to be integrated with third-

party devices. 
With this aim, we developed a new wearable multi-sensor 

system (INertial module with DIstance Sensors and Pressure 
insoles, INDIP), which integrates multiple IMUs with 
pressure insoles (PIs) and time-of-flight distance sensors 
(DSs) [6,7], and the relative algorithm for the estimation of 
gait metrics. Exploiting the redundancy of information 
provided by different working principles, taking advantage of 
the latest technologies and state of the art algorithms, the 
INDIP system could represent a mGS (“best available” 
reference) for real-world gait assessment applications. In this 
work, we present the INDIP, both in terms of hardware and 
algorithms, along with a preliminary validation on five 
healthy participants showing the results from both in-lab and 
out-of-lab experiments. 

II. MATERIALS AND METHODS 

A. System description – INDIP system 

The INDIP system includes three IMU (fs=100 Hz), two 

plantar pressure insoles (16 force resistive sensing elements, 

fs=100 Hz) and two time-of-flight distance sensors 

(range=0.2 m, fs=50 Hz). Each IMU includes a 3D 

accelerometer (±16 g), a 3D gyroscope (±2000 °/s) and a 3D 

magnetometer (±50 Gauss). Data are processed by an ARM® 

32-bit Cortex®-M4 CPU and stored in an on-board 128 MB 

flash storage for up to twelve hours of data logging. The 

system allows the synchronisation with third-party devices 

via an external trigger. 

B. Experimental set-up 

The INDIP system was validated against the stereo-

photogrammetric system (SP) during lab-based acquisitions 

to assess its accuracy. Then, data were collected during 2.5h 

out-of-lab acquisitions to evaluate its capabilities, robustness 

and usability in real-world conditions. Validation 

experiments have been carried out recruiting healthy 

participants at both the University of Sassari (Italy) and the 

University of Sheffield (UK). Ethics approval was granted 

by the University of Sheffield’s ethics committee 
(Application 029143). All participants provided written 

informed consent, before taking part to the acquisitions. In 

this paper, preliminary results obtained from five 

participants (4 males and 1 female, age 35±8.9 years) from 

both in-lab and real-world data acquisitions are presented 

and discussed. For the in-lab experiments, each participant 

was equipped with SP markers and the INDIP system. The 

lower back IMU was positioned using an elastic belt, PIs 

were inserted in the shoes, feet IMUs were fixed to the shoe
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Figure 1: a) INDIP foot positioning (MIMU, PI, DS); b) INDIP lower back 

positioning. 

instep using a clip. The DSs were attached asymmetrically, 

pointing medially, with elastic belts to the shanks to avoid 

mutual interference (Fig. 1). A total of 12 markers were 

used: four markers on each foot, and four markers placed on 

a rigid cluster used as support also for the lower back IMU. 

For the free-living acquisition, participants were equipped 

with the INDIP system only (Fig. 1). 

C. Experimental protocol  

The lab-based protocol included different motor tests 
characterized by an increasing complexity. For the purposes 
of this study, four tasks executed at comfortable self-selected 
speed were considered (Fig. 2): 

• Straight walk along a 5m path. 

• L-test: the participant is asked to sit in a chair, stand up, 
walk straight, turn at a curved 90°, walk straight, turn again at 
a curved 180°, follow the circuit back to the chair and sit 
down. 

• Surface test: the participant is asked to stand at the starting 
point and walk the circuit, passing over the carpeted mat, by 
turning around the cones and finish at the marked end point. 
The circuit is repeated twice. 

• Hallway test: the participant is asked to stand at the 
starting point and walk to the other end of the walkway, 
stepping up and down off a step halfway through the path. At 
the end of the walkway, the participant will complete a sharp 
180° turn and walk back along the walkway (again stepping 
up and down off a step) until reaching the end point. 

The out-of-lab protocol included acquisition of data 

during unsupervised free-living for 2.5h, asking participants 

to perform the following activities: rise from a chair and 

walk to another room; walk to the kitchen and get something 

to drink; walk up and down stairs; walk outside for a 

minimum of 2 minutes; walk up and down an inclined path, 

if outside. 

D. Data processing 

A preliminary calibration procedure was applied to each 

of the INDIP sensors according to [8,9]. Before each data 

acquisition, all IMUs underwent to a 60s static acquisition to 

compute the bias of the gyroscope [10]. A trigger-based 

synchronisation procedure was applied to align the SP and 

INDIP data. 

Spatio-temporal parameters were calculated from the 

INDIP data combining the information provided by different 

types of sensors, according to the following six main steps: 

(i) static/dynamic activity periods recognition: used to 

discard the intervals in which there is no movement. The 

subject is “active” if the standard deviation of acceleration of  

 
Figure 2: a) Straight walk; b) L-test; c) Surface test; d) Hallway test. 

both lower-back and at least one foot is above an 

empirical threshold (0.7 and 2.1 m/s2, respectively) [11,12]. 

(ii) initial contact (IC) and final contact (FC) events 

detection: based on PI and foot IMU, which are used 

separately to detect gait events. Then, results are combined, 

giving priority to PIs in case of events detected with both 

methods. The PIs method applies a cluster-based approach to 

describe foot contacts in a finer way. Specifically, a first 

derivative approach is used to identify rising/falling minima 

[13], used as reference points. Then, for each possible 

IC/FC, a sub-group of three rising/falling minima is selected, 

corresponding to the activation/deactivation of neighboring 

sensors. An IC corresponds to the third rising minimum of 

the subgroup, while an FC corresponds to the third falling 

minimum of the subgroup. For the IMU method, the 

algorithm proposed by Trojaniello et al. [14] was adapted to 

foot positioning. 

(iii) computation of spatial variables from feet-IMUs: a 

Madgwick filter [15] is applied to inertial data, to provide 

reliable orientation estimates [16,17]. This algorithm uses 

the instants when the foot is stationary to re-initialize the 

orientation, thus limiting the integration period as well as the 

orientation drift. To minimize the convergence time, the 

orientation is initialized with an algebraic quaternion using 

the accelerometer measurements only, as described in 

Valenti et al. [18]. Then, velocity and displacement are 

obtained with a direct and reverse integration approach [14]. 

(iv) stride identification and selection: right and left 

strides are initially detected from the ICs. A stride selection 

is then performed by applying conditions on minimum and 

maximum stride duration, minimum stride length and 

maximum stride height. At this stage, DSs are used as "stride 

counters" and give additional information about the 

reliability of each measure [7]. 

(v) definition of continuous walking periods (CWPs): 

these are defined by merging the information relating to 

right and left strides. Each CWP represents a gait portion 

with a minimum of two left and two right strides. For the in-

lab acquisitions, each trial corresponds to a CWP. 



  

(vi) calculation of gait metrics: these are computed for 

each CWP and include start and end time instants, duration, 

average cadence, path length and strides number. Stride 

duration, stride length and stride speed values, which are 

initially computed at stride level, are also averaged at a 

CWP-level to obtain additional gait metrics relative to that 

gait portion (i.e., average stride duration, average stride 

length and average stride speed). 

For the SP-based method gait metrics were identified 

using skin-marker trajectories; IC and FC events were 

estimated as described in [19]. 

Firstly, the INDIP based-method was validated against the 

SP method using outcome results from in-lab experiments. 

For each gait metric at CWP level, the absolute percentage 

difference between INDIP and SP value was computed and 

then median percentage error, 25th percentile and 75th 

percentile across all the tests for all the subjects. Secondly, 

an evaluation of INDIP performances in real-world 

conditions was carried out by looking at system usability, 

capabilities and robustness. In this case, mean and standard 

deviation were computed considering all the CWP detected 

during the 2.5h acquisition for all the participants. 

III. RESULTS 

Results obtained from the comparison of INDIP and SP 
systems across the four in-lab tasks performed by the five 
healthy subjects are presented in Table I. Results regarding 
gait metrics obtained from the INDIP system for out-of-lab 
acquisitions are illustrated in Table II. 

IV. DISCUSSION 

In the INDIP preliminary validation against SP method, 
extremely low median percentage errors were achieved in the 
estimate of start and end instants (median percentage error 
0.86% for the start, 0.21% for the end), duration (0.24%), 
average cadence (0.14%), and length (1.01%) for the 
identified continuous walking periods. Also for stride-level 
parameters, i.e., average stride duration (0.14%), average 
stride length (1.21%) and average stride speed (1.10%), the 
median percentage error was very low, confirming the results 
of our previous study [20]. Moreover, both SP-based and 
INDIP-based methods detected the same number of strides. 
All the other variables showed a 25th percentile below 1%. 
The 75th percentile was lower than 1% for CWP end (0.65%), 
average cadence (0.32%) and average stride duration 
(0.32%); lower than 2% for start instant (1.09%), duration 
(1.22%), length (1.9%). Slightly higher differences were 
observed for average stride length and speed (2.49% and 
2.52%, respectively). Previous studies focused their attention 
on validation of wearable systems including one or more 
sensors. The work from Li and colleagues [21] validated a 
multi-sensor system including, for each foot, a force sensor, 
an IMU and a range sensor using the SP system as reference 
system, but errors were 9.34% for stride length and 5.90% for 
stride velocity. In [22], Agostini et al. compared the 
performances of two IMUs with those of a footswitch-based 
system (STEP 32 footswitches), obtaining errors below 5% 
for cadence and stride time; and in [23], validated two feet-
mounted IMUs against SP system obtaining average errors of 
5.9% for stride length and 6.3% for stride speed. Panero et al.  

TABLE I.  MEDIAN PERCENTAGE ERROR, 25TH
 PERCENTILE AND 75TH

 

PERCENTILE FOR CWP PARAMETERS 

Parameter 
Median percentage 

error (%) 

25th 

percentile 

75th 

percentile 

Start 0.86 0.46 1.09 

End 0.21 0.14 0.65 

Duration 0.24 0.07 1.22 

Average cadence 0.14 0.07 0.32 

Path length 1.01 0.49 1.90 

Average stride 

duration 
0.14 0.04 0.32 

Average stride 

length 
1.21 0.90 2.49 

Average stride 

speed 
1.10 0.70 2.52 

Strides number  0 0 0 

TABLE II.  MEAN AND MEAN STANDARD DEVIATION OF CWP 

PARAMETERS FROM INDIP SYSTEM FOR OUT-OF-LAB 

Parameter Mean ± Mean Standard Deviation 

Duration (s)  70.60±144.42 

Average cadence 

(steps/min)  
80.06±21.67 

Length (m)  76.82±169.93 

Average stride 

duration (s)  
1.38±0.27 

Average stride length 

(m)  
1.05±0.24 

Average stride speed 

(m/s)  
0.84±0.29 

Strides number  114.37±246.86 

 

[24] validated two methods, reporting only average error 

values obtained while using a single lower back IMU (0.01s 

on stride time) and for two shank mounted IMUs (0s on 

stride time). Fusca et al. [25] used a lower back IMU, 

obtaining average percentage errors of 5.7% for stride time, 

4.9% for cadence, 13.5% for stride speed. All those studies 

considered only straight walking, while our in-lab testing 

protocol was very complex and conceived to stress the 

INDIP system. Except for the straight walk test, all motor 

tasks have been designed to include a variety of movements 

which are common in daily life, such as sitting on a chair, 

turns, different surfaces and obstacles (i.e., the carpeted mat 

and the step). Therefore, the errors obtained are extremely 

low considering the high variability that could be expected. 

Moreover, a structured sensitivity analysis was performed to 

optimise the gait metrics and to maximally improve our 

implementation. 

The INDIP system can provide a variety of gait metrics by 

exploiting the redundancy of information provided by 

different types of sensors. This is done, for example, to 

increase stride detection specificity: each stride is identified 

from gait events detected with both PI and IMU algorithms 



  

and then checked also using the DS. Only Li et al [21] 

proposed a similar solution but with very high errors 

compared to our results.  

Results from out-of-lab experiments (Table II) show that 

the INDIP-based method can provide the same gait metrics 

as the in-lab experiments also of the free-living acquisition. 

Out-of-lab experiments were carried out without technical 

issues (no system crashes, unexpected events, data loss or 

uncompleted acquisitions). The system resulted to be 

comfortable and easy to use for every participant, since it 

required no interaction at all, which is also a great advantage 

for a mGS. 

V. CONCLUSION 

A novel multi-sensor wearable solution for the 

identification of continuous walking periods and the 

estimation of relevant gait metrics within them has been 

presented. Preliminary results obtained in five healthy 

subjects are very encouraging. An extensive validation of the 

INDIP system on more participants and a larger set of motor 

tasks including simulated daily activities is currently in 

progress. Moreover, future developments include the 

validation of the proposed system in a similar fashion (i.e., 

in-lab/out-of-lab acquisitions) on both healthy participants 

and people affected by different mobility impairments. 
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