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ABSTRACT 44 

The accurate identification of initial and final foot contacts is a crucial prerequisite for obtaining a reliable 45 

estimation of spatio-temporal parameters of gait. Well-accepted gold standard techniques in this field are force 46 

platforms and instrumented walkways, which provide a direct measure of the foot-ground reaction forces. 47 

Nonetheless, these tools are expensive, non-portable and restrict the analysis to laboratory settings. 48 

Instrumented insoles with a reduced number of pressure sensing elements might overcome these limitations, but 49 

a suitable method for gait events identification has not been adopted yet. The aim of this paper was to present 50 

and validate a method aiming at filling such void, as applied to a system including two insoles with 16 pressure 51 

sensing elements (element area = 310 mm2), sampling at 100Hz. Gait events were identified exploiting the sensor 52 

redundancy and a cluster-based strategy. The method was tested in the laboratory against force platforms on 53 

nine healthy subjects for a total of 801 initial and final contacts. Initial and final contacts were detected with low 54 

average errors of (about 20 ms and 10 ms, respectively). Similarly, the errors in estimating stance duration and 55 

step duration averaged 20 ms and less than 10 ms, respectively. By selecting appropriate thresholds, the method 56 

may be easily applied to other pressure insoles featuring similar requirements. 57 

I. INTRODUCTION 58 

The gait cycle represents the functional element of walking, traditionally identified by the initial contact (IC) of 59 

the foot with the ground and the following IC of the same foot (Della Croce et al., 2018; Whittle, 1993). A direct 60 

approach to detect these gait events (GEs) is by using force platforms (FPs) and instrumented walkways. These 61 

provide a direct measure of forces resulting from the foot-ground interaction, thus representing a gold standard 62 

for GEs detection. However, both devices are non-portable, expensive and require an appropriate laboratory 63 

environment, therefore constraining the analysis to few strides and/or straight walks (Adkin et al., 2000). 64 

Moreover, laboratory analysis only allows for the assessment of walking capacity, which should ideally be 65 

complemented with continuous daily living measures of mobility performance to obtain a thorough assessment 66 

(World Health Organization, 2007; Rochester et al., 2020). In this perspective, wearable inertial measurement 67 

units (IMUs) are the key to enable gait analysis in real-world scenarios as GEs can be identified from the 68 

accelerations and angular velocities signals recorded by two units attached to the ankles/feet (Mariani et al., 69 

2012; Trojaniello et al., 2014). However, being the latter an indirect method, processing algorithms performance 70 

may be affected by errors, and it should, therefore, be regarded as a silver standard solution. 71 

Foot switches are an effective alternative to estimate GEs and their use has been explored in several studies over 72 

the last decades (Agostini et al., 2013; Bae et al., 2011; Hausdorff et al., 1995; Kong et al., 2009; Skelly et al., 73 

2001). The foot switch technology, however, generally includes only two or three sensing elements, which require 74 

a proper positioning under the foot. Due its low spatial sensor resolution, the approach does not allow to identify 75 

the specific area of the sole-ground contact and, in turn, it may also affect the GEs temporal resolution. This is 76 

even more true in case of pathological gait (i.e., pronation, supination, equine gait, foot drop, shuffling children 77 

with cerebral palsy), for which few sensors are not sufficient (Smith et al., 2016). Another attractive option is 78 

represented by plantar pressure insoles, based on different technologies and sensors configurations (e.g., 79 

Tekscan® F-Scan® System; Novel® Pedar® System, etc.). However, these devices are specifically conceived for high-80 

resolution pressure mapping applications and generally include a dense grid of sensors (from 99 to 960 sensing 81 

elements) which inevitably lead to higher costs and complexity in terms of data management and reading, but 82 

which are not strictly necessary for simple GEs estimations. 83 

In this study we propose an original method for GEs detection, based on the use of instrumented insoles, each 84 

including only sixteen force-sensing resistor elements (pressure insoles, PIs). The implemented algorithm exploits 85 

the number of sensors by using a cluster-based approach to describe foot-ground contacts in a finer way and 86 

avoid missed and extra GEs, providing information about foot positioning. The method was tested against FPs in 87 

the laboratory using data collected on healthy subjects.  88 

II. METHODS 89 

A. System Description and GEs algorithm 90 

Two plantar PIs (mod. YETI, 221e S.r.l., Padua, Italy; 16 sensing elements; element area = 310 mm2; fs = 100 Hz; 91 

ground reaction force threshold = 5 N) were used in this study, with a design similar to that adopted by Ciniglio 92 

et al. 2021. Each sensing element is constituted by a force sensing resistor, exhibiting a resistance value inversely 93 
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proportional to the applied force. The output is expressed as voltage (full-scale voltage value VFS = 2.8 V). Each 94 

pressure insole is connected to a central processing unit, which also includes a magneto-IMU (Figure 1) that is not 95 

used for this study. Data is recorded by an ultra-low-power microcontroller and stored in an on-board flash 96 

storage. 97 

 98 

FIGURE 1 ABOUT HERE 99 

 100 

The PI signals processing algorithm is described by the following steps (Figure 2):  101 

(i) Pre-processing. 102 

PI signals are normalised with respect to VFS, expressed in normalised units (nu), and then filtered using a 5-points 103 

non-linear median filter to have a smoothing effect while enhancing edges (Stork et al., 2003);  104 

(ii) Detection and selection of instants of rising and falling edges. 105 

For each of the filtered PI signals Xi(t), where i=1,..,16 represents the i-th PI signal, a first derivative approach 106 

(Hopkins, 2001) is applied to detect rising and falling edges. Edges are identified from Ẋi(t) using a peak detection 107 

approach (Benocci et al., 2009) with an amplitude threshold defined as Th1 = 5n, being n the signal noise 108 

amplitude as computed in static conditions (in this study, we used Th1 = 0.05 nu). For each PI signal, rising edges 109 

are identified as positive peaks > Th1 and the corresponding time instants are organized in a vector tRE,i. Similarly, 110 

falling edges are identified as negative peaks < -Th1 and the corresponding time instants are organized in a vector 111 

tFE,i. Rising and falling edges are automatically checked, in terms of time distance and amplitude of the PI signal, 112 

to discard false positives. Figure 2a shows an example of detection of a rising edge and a falling edge;  113 

(iii) Detection and selection of local minima (instants of rising and falling minima). 114 

The identification of the instants of rising and falling minima is performed by applying to Xi(t) a threshold Th2 = 115 

0.02 nu, using rising and falling edges as reference points (Hausdorff et al., 1995). In particular, each rising minima 116 

is identified as the first point with Xi(t) < Th2 preceding the considered rising edge instant, while each falling 117 

minima is identified as the first point with Xi(t) < Th2 after the considered falling edge instant. Rising minima 118 

instants and falling minima instants were organised in vectors, tRM,i and tFM,i respectively. Figure 2a shows an 119 

example of detection of one rising minimum and one falling minimum;  120 

(iv) Identification of activation/deactivation clusters. 121 

Once the rising and falling minima instants are detected for all the PI signals, they are organised in chronological 122 

order in a unique vector (tRM and tFM respectively), also noting the corresponding sensing element number in 123 

another vector (sRM and sFM). This step is needed to group the instants of rising/falling minima corresponding to 124 

the same foot contact, i.e. the PI sensing elements which activate/deactivate together when the foot hits the 125 

ground. An activation cluster is identified imposing that the time distance between consecutive instants of tRM is 126 

lower than Th3 = 0.4s. Then, a deactivation cluster includes the instants of tFM between two consecutive activation 127 

clusters. For each cluster, the minima instants and the sensing elements numbers are saved (A_clusterj 128 

/D_clusterj, where j = j-th activation/deactivation cluster). 129 

Figure 2b shows an example of one activation cluster and one deactivation cluster. 130 

(v) Identification of IC/FC (final contact) intervals and definition of IC/FC events. 131 

A foot-ground contact interval is defined when at least three sensing elements of the PI belonging to the same 132 

spatial neighbourhood are consecutively activated and deactivated, i.e. correspond to three consecutive minima 133 

belonging to the same cluster (A_cluster for ICs and D_cluster for FCs). For each PI’s sensing element, the 134 

neighbourhood consists of those sensing elements which are spatially close to the considered unit (Figure 1) (e.g. 135 

for the sensing element no. 12, the neighbourhood includes sensing elements 11, 13, 14, 15, 16; further details 136 

are reported in Appendix B). In fact, it is reasonable to assume that, when an IC or FC occurs, the sensing elements 137 

which refer to the same anatomically functional area of foot sole are activated or deactivated, respectively.  138 

Each IC interval is identified starting from the first rising minima of an activation cluster; while each FC interval is 139 

identified starting from the last falling minima of a deactivation cluster. 140 

Finally, each IC is assumed to coincide with the rising minimum instant corresponding to the third sequentially 141 

activated sensing elements within the considered IC interval. Likewise, each FC is assumed to coincide with the 142 

falling minimum instant corresponding to the third sequentially deactivated sensing elements within the 143 

considered FC interval. Figure 2c shows an example of one IC interval and one FC interval. 144 

A workflow of the algorithm can be found in Appendix A. 145 

 146 

FIGURE 2 ABOUT HERE 147 

 148 
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B. Experimental setup 149 

The validation experiments involved nine healthy participants (5 females and 4 males; age 25.4 ± 1.3 years, shoe 150 

size 40.5 ± 4.1 EU) and took place at the University of Sassari (Italy). All participants signed an informed consent 151 

approved by the IRB before taking part to the study. PIs were inserted in participants’ shoes and central 152 

processing units were clipped over the instep (Figure 3). The only specific requirement for the shoes was to avoid 153 

knee-high boots. Data from two FPs (AMTI, Massachusetts, USA; fs = 1000 Hz) were acquired through a motion 154 

capture system also including video recordings (Vicon Vue, fs = 50Hz). Data from PIs and FPs were synchronized 155 

using an additional central processing unit as external trigger, connected to the motion capture system via cable. 156 

Each participant was asked to walk for six minutes back and forth at comfortable speed, stepping on the FPs as 157 

many times as possible. 158 

 159 

FIGURE 3 ABOUT HERE 160 

 161 

C. Data processing 162 

For each subject, a preliminary visual inspection of the “good strides” (entire foot on the FP during stance phase) 163 

was performed using video recordings. Then, FP data were down-sampled to 100 Hz. A pre-processing procedure 164 

was applied for the synchronisation of PIs measurements (started via BLE protocol, v. 4.1) with the FP data, using 165 

the time vector provided by the trigger to interpolate the data.  166 

The GEs detection algorithm results were compared with those obtained from the FPs (ground reaction force 167 

threshold = 25 N) in terms of average root mean square (RMS) error, bias and standard deviation (SD) error 168 

computed over the stances of all participants. An example of IC and FC detection from both PI and FP is shown in 169 

Figure 4. 170 

 171 

FIGURE 4 ABOUT HERE 172 

 173 

III. RESULTS 174 

RMS error, bias and SD error obtained from the comparison are reported in Table 1. A total of 801 ICs and 801 175 

FCs were analysed (89 ICs and FCs on average for each participant), while errors on step duration were computed 176 

considering 315 steps in total. Average errors were lower than 10 ms for FCs, 20 ms for ICs, 20 ms for stance 177 

duration, less than 1 ms for step duration. 178 

 179 

(Table 1) 180 

 181 

IV. DISCUSSION  182 

GEs and temporal parameters obtained from the PIs showed a 100% correspondence with those estimated from 183 

the FPs. Low average RMS errors were obtained for stance duration (< 20 ms) and for both IC and FC events, (22 184 

ms and 17 ms, respectively). IC events, as detected by the proposed method were, on average, anticipated with 185 

respect to those detected by the FP (average bias = 21 ms), while FC events were marginally delayed. A bias of 23 186 

ms was obtained for stance duration. Very low values were obtained for the average SD error (7 ms for ICs, 12 ms 187 

for FCs and 7 ms for stance duration). For step duration, both RMS error and SD error were around one sample, 188 

while the average bias was zero.  189 

Similar but slightly larger errors were reported by Catalfamo and colleagues (2008) using a F-Scan Mobile Tekscan 190 

pressure insole (22 ± 9 ms for ICs and 10 ± 4 ms for FCs). However, it should be noted that the proposed algorithm 191 

was successful in obtaining lower errors using a pressure insole with a much smaller number of sensing elements 192 

(16 vs 960) and using a lower sample-frequency (100 Hz vs 200 Hz), with clear advantages in terms of cost and 193 

efficiency.  194 

In general, the majority of the methodological studies analysing the performance of different pressure insoles, 195 

focused on gait parameters other than ICs and FCs and reported larger errors (Agarwal et al., 2020; Braun et al., 196 

2015; Carbonaro et al., 2016; Crea et al., 2014). For instance, the average error reported in Carbonaro et al. (2016) 197 

by comparing a commercial smart shoe including two force sensors (FootMov) against a motion capture system 198 

was 39 ± 65 ms for stance duration. Often, a direct comparison with the results in the literature was not possible 199 



 

5 

 

due to the lack of a gold standard (Benocci et al., 2009), adoption of manual labelling of the GE detection (Roth 200 

et al., 2018) or different research objectives (i.e., PI signals used only for activity recognition).  201 

The low errors found for both ICs and FCs demonstrated that the combined use of low-cost PI and specific 202 

algorithms for signal processing are a good compromise between more complex solutions, such as high-resolution 203 

pressure mapping technology, and foot-switch systems with a low number of sensors. A notable feature of the 204 

proposed method is that it can be applied to other PIs having a sufficient number of sensing elements. The 205 

minimum sensor number and area would clearly depend on the shoe size of the subjects to analyse (e.g. children), 206 

however, we found that an activated/deactivated area of about 900 mm2 (area of three sensing unit of the PI) 207 

guaranteed for good results for both male and female adults. Having a sufficiently high number of sensors allows 208 

to describe the foot-ground contact in a comprehensive way and virtually recognise all the possible strategies of 209 

foot-floor contact. Last but not least, the PIs here used can be easily combined with IMUs as part of a multi-sensor 210 

wearable system, which could provide accurate temporal estimates and a for a more extensive gait assessment 211 

also in a free-living context. Further studies will focus on overcoming the limitations of having tested the proposed 212 

method only on healthy subjects and on straight walking. 213 

 214 
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APPENDIX A 283 

 284 

Definitions: 285 𝑋𝑋𝑖𝑖(𝑡𝑡) = pre-processed signal from the i-th sensing element   286 

#SE = number of sensing elements of the pressure insole 287 Ẋ𝑖𝑖(𝑡𝑡)  =  first derivative of 𝑋𝑋𝑋𝑋𝑖𝑖[𝑛𝑛]  288 𝑡𝑡𝑅𝑅𝑅𝑅,𝑖𝑖 = rising edges instants 289 𝑡𝑡𝐹𝐹𝑅𝑅,𝑖𝑖 = falling edges instants 290 𝑡𝑡𝑅𝑅𝑅𝑅,𝑖𝑖 = rising minima instants 291 𝑡𝑡𝐹𝐹𝑅𝑅,𝑖𝑖 = falling minima instants 292 𝑡𝑡𝑅𝑅𝑅𝑅 = rising minima instants of all the sensing units 293 

Figure 1. Algorithm workflow 
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𝑡𝑡𝐹𝐹𝑅𝑅 = falling minima instants of all the sensing units 294 

A_cluster = activation clusters  295 

D_cluster = deactivation clusters 296 

 297 

Checks on rising and falling edges instants: 298 

• Check on temporal distance. This is performed applying a threshold Thd = 0.6 s. If the distance between 299 

consecutive events is lower than Thd, the second event is discarded in case of rising edges, while the 300 

first event is discarded for the falling edges. 301 

• Check on the amplitude reached by 𝑥𝑥𝑖𝑖(𝑡𝑡) after each rising edge instant and before each falling edge 302 

instant. The amplitude reached in the considered window (10 samples after a rising edge instant or 10 303 

samples before a falling edge instant) must be at least 0.3 nu, otherwise the event is discarded. 304 

 305 
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 APPENDIX B 349 

A. Definition of the neighbourhood for each PI’s sensing unit 350 

The neighbourhood of each sensing element is defined as reported in the following table: 351 

 352 

 353 

 354 

 355 

 356 

 357 

 358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 

 367 

 368 

 369 

 370 

 371 

 372 

 373 

 374 

 375 

Sensing unit number Neighbourhood 

1 2,3,4,6,7 

2 1,3,4,6,7 

3 1,2,4,6,7,8,5 

4 1,2,3,5,7,8,6,9 

5 1,2,3,5,7,8,6,9 

6 1,2,3,4,7,8 

7 1,2,3,4,5,6,8,9 

8 3,4,5,6,7,9,10 

9 5,8,4,7,10,11 

10 9,11,8,5,12 

11 9,10,12,14,13,15,16 

12 10,11,13,14,15,16 

13 11,12,14,15,16 

14 11,12,13,15,16 

15 12,13,14,16,11 

16 12,13,14,15,11 
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 376 

Figure 1: Magneto-IMU and pressure insole used for the right foot. 377 

 378 

 379 

 380 

Figure 2: Principal steps of the algorithm shown for one stance. a) Detection and selection of rising and falling 381 

edges and local minima (rising and falling minima) for each PI signal; b) Identification of one 382 

activation/deactivation cluster on PI signals; c) Identification of IC/FC intervals and definition of IC and FC events 383 

on PI signals. 384 
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 389 

Figure 3: a) PI positioning inside the shoe; b) Clip attached to shoe laces; c) Final sensors positioning with 390 

magneto-IMU fixed to the clip. 391 

 392 

 393 

 394 
 395 

Figure 4: Gait events (GEs) detection from both pressure insole (PI) and force plate (FP). 396 
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 399 

 400 

Table 1: RMS error, bias, and SD error 401 

Variable Average RMS Error (ms; frames) Average Bias (ms; frames) Average SD Error (ms; frames) 

IC 22; 2 -21; -2 7; <1 

FC 18; <2 3; <1 12; 1 

Stance duration 18; <2 23; 2 7; <1 

Step duration 10; 1 0; <1 10; 1 
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