443 research outputs found
Cretaceous to Miocene cooling of Austroalpine units southeast of the Tauern Window (Eastern Alps) constrained by multi-system thermochronometry
The cooling history of the Polinik and Kreuzeck Blocks of the Austroalpine units to the southeast of the Tauern Window are reexamined in the light of new mica Ar/Ar-, zircon fission track and apatite fission track data. Our new data demonstrate that the two blocks experienced a significantly different thermal evolution during Mesozoic-Cenozoic times: The Polinik Block revealed Late Cretaceous Ar/Ar ages (87.2–81.6 Ma), which reflect cooling subsequent to the thermal peak of Eo-Alpine metamorphism. The Kreuzeck Block, in contrast, shows early Permian Ar/Ar ages (295–288 Ma) that reflect post-Variscan extension and cooling. Late Cretaceous zircon fission track ages (67.8 and 67.3 Ma) found in the Kreuzeck Block are interpreted to reflect post-metamorphic exhumational cooling after the Eo-Alpine metamorphism. Miocene apatite fission track ages (21.3–8.7 Ma) and transdimensional inverse thermal history modelling results suggest that the Polinik Block cooled rapidly through the apatite partial annealing zone and exhumed to near surface temperatures in the middle Miocene. The Kreuzeck Block, in contrast, cooled and exhumed to near surface temperatures already in the Oligocene and early Miocene as evidenced by apatite fission track ages (29.1–16.4 Ma) and thermal history modelling results. Based on the temperature difference between the uppermost and lowermost samples from steep elevation profiles, calculated paleo-geothermal gradients are in the range between 47 and 43 °C/km for the late Oligocene and middle Miocene periods. These high values likely resulted from an elevated heat flow associated with magmatism in the area and from the fast exhumation of hot Penninic domains during Oligocene and Miocene times
Bisphenol A and 17β-Estradiol Promote Arrhythmia in the Female Heart via Alteration of Calcium Handling
There is wide-spread human exposure to bisphenol A (BPA), a ubiquitous estrogenic endocrine disruptor that has been implicated as having potentially harmful effects on human heart health. Higher urine BPA concentrations have been shown to be associated with cardiovascular diseases in humans. However, neither the nature nor the mechanism(s) of BPA action on the heart are understood. leak suppressed estrogen-induced triggered activities. The rapid response of female myocytes to estrogens was abolished in an estrogen receptor (ER) β knockout mouse model. leak. Our study provides the first experimental evidence suggesting that exposure to estrogenic endocrine disrupting chemicals and the unique sensitivity of female hearts to estrogens may play a role in arrhythmogenesis in the female heart
Cardiotoxicity of Freon among refrigeration services workers: comparative cross-sectional study
<p>Abstract</p> <p>Background</p> <p>Freon includes a number of gaseous, colorless chlorofluorocarbons. Although freon is generally considered to be a fluorocarbon of relatively low toxicity; significantly detrimental effects may occur upon over exposure. The purpose of the present study is to investigate whether occupational exposure to fluorocarbons can induce arterial hypertension, myocardial ischemia, cardiac arrhythmias, elevated levels of plasma lipids and renal dysfunction.</p> <p>Methods</p> <p>This comparative cross-sectional study was conducted at the cardiology clinic of the Suez Canal Authority Hospital (Egypt). The study included 23 apparently healthy male workers at the refrigeration services workshop who were exposed to fluorocarbons (FC 12 and FC 22) and 23 likewise apparently healthy male workers (unexposed), the control group. All the participants were interviewed using a pre-composed questionnaire and were subjected to a clinical examination and relevant laboratory investigations.</p> <p>Results</p> <p>There were no significant statistical differences between the groups studied regarding symptoms suggesting arterial hypertension and renal affection, although a significantly higher percentage of the studied refrigeration services workers had symptoms of arrhythmias. None of the workers had symptoms suggesting coronary artery disease. Clinical examination revealed that the refrigeration services workers had a significantly higher mean pulse rate compared to the controls, though no significant statistical differences were found in arterial blood pressure measurements between the two study groups. Exercise stress testing of the workers studied revealed normal heart reaction to the increased need for oxygen, while sinus tachycardia was detected in all the participants. The results of Holter monitoring revealed significant differences within subject and group regarding the number of abnormal beats detected throughout the day of monitoring (p < 0.001). There were no significant differences detected in the average heart rate during the monitoring period within subject or group. Most laboratory investigations revealed absence of significant statistical differences for lipid profile markers, serum electrolyte levels and glomerular lesion markers between the groups except for cholesterol and urinary β2-microglobulin (tubular lesion markers) levels which were significantly elevated in freon exposed workers.</p> <p>Conclusions</p> <p>Unprotected occupational exposure to chlorofluorocarbons can induce cardiotoxicity in the form of cardiac arrhythmias. The role of chlorofluorocarbons in inducing arterial hypertension and coronary artery diseases is unclear, although significantly elevated serum cholesterol and urinary β2-microglobulin levels raise a concern.</p
Combining isotopic signatures of n(87Sr)/n(86Sr) and light stable elements (C, N, O, S) with multi-elemental profiling for the authentication of provenance of European cereal samples
The aim of this work (from the FP6 project TRACE) was to develop methods based on the use of geochemical markers for the authentication of the geographical origin of cereal samples in Europe (cf. EC regulations 2081/92 and 1898/06). For the first time, the potential usefulness of combining n(87Sr)/n(86Sr) and δ13C, δ15N, δ18O and δ34S isotopic signatures, alone or with key element concentrations ([Na], [K], [Ca], [Cu] and [Rb], progressively identified out of 31 sets of results), was investigated through multiple step multivariate statistics for more than 500 cereal samples collected over 2 years from 17 sampling sites across Europe representing an extensive range of geographical and environmental characteristics. From the classification categories compared (north/south; proximity to the Atlantic Ocean/to the Mediterranean Sea/to else; bed rock geologies) the first two were the most efficient (particularly with the ten variables selected together). In some instances element concentrations made a greater impact than the isotopic tracers. Validation of models included external prediction tests on 20% of the data randomly selected and, rarely done, a study on the robustness of these multivariate data treatments to uncertainties on measurement results. With the models tested it was possible to individualise 15 of the sampling sites
A round robin approach to the analysis of bisphenol a (BPA) in human blood samples
BACKGROUND: Human exposure to bisphenol A (BPA) is ubiquitous, yet there are concerns about whether BPA can be measured in human blood. This Round Robin was designed to address this concern through three goals: 1) to identify collection materials, reagents and detection apparatuses that do not contribute BPA to serum; 2) to identify sensitive and precise methods to accurately measure unconjugated BPA (uBPA) and BPA-glucuronide (BPA-G), a metabolite, in serum; and 3) to evaluate whether inadvertent hydrolysis of BPA-G occurs during sample handling and processing. METHODS: Four laboratories participated in this Round Robin. Laboratories screened materials to identify BPA contamination in collection and analysis materials. Serum was spiked with concentrations of uBPA and/or BPA-G ranging from 0.09-19.5 (uBPA) and 0.5-32 (BPA-G) ng/mL. Additional samples were preserved unspiked as ‘environmental’ samples. Blinded samples were provided to laboratories that used LC/MSMS to simultaneously quantify uBPA and BPA-G. To determine whether inadvertent hydrolysis of BPA metabolites occurred, samples spiked with only BPA-G were analyzed for the presence of uBPA. Finally, three laboratories compared direct and indirect methods of quantifying BPA-G. RESULTS: We identified collection materials and reagents that did not introduce BPA contamination. In the blinded spiked sample analysis, all laboratories were able to distinguish low from high values of uBPA and BPA-G, for the whole spiked sample range and for those samples spiked with the three lowest concentrations (0.5-3.1 ng/ml). By completion of the Round Robin, three laboratories had verified methods for the analysis of uBPA and two verified for the analysis of BPA-G (verification determined by: 4 of 5 samples within 20% of spiked concentrations). In the analysis of BPA-G only spiked samples, all laboratories reported BPA-G was the majority of BPA detected (92.2 – 100%). Finally, laboratories were more likely to be verified using direct methods than indirect ones using enzymatic hydrolysis. CONCLUSIONS: Sensitive and accurate methods for the direct quantification of uBPA and BPA-G were developed in multiple laboratories and can be used for the analysis of human serum samples. BPA contamination can be controlled during sample collection and inadvertent hydrolysis of BPA conjugates can be avoided during sample handling
- …