55 research outputs found

    Rapid Invasion of Spartina Alterniflora in the Coastal Zone of Mainland China: Spatiotemporal Patterns and Human Prevention

    Get PDF
    Given the extensive spread and ecological consequences of exotic Spartina alterniflora (S. alterniflora) over the coast of mainland China, monitoring its spatiotemporal invasion patterns is important for the sake of coastal ecosystem management and ecological security. In this study, Landsat series images from 1990 to 2015 were used to establish multi-temporal datasets for documenting the temporal dynamics of S. alterniflora invasion. Our observations revealed that S. alterniflora had a continuous expansion with the area increasing by 50,204 ha during the considered 25 years. The largest expansion was identified in Jiangsu Province during the period of 1990-2000, and in Zhejiang Province during the periods 2000-2010 and 2010-2015. Three noticeable hotspots for S. alterniflora invasion were Yancheng of Jiangsu, Chongming of Shanghai, and Ningbo of Zhejiang, and each had a net area increase larger than 5000 ha. Moreover, an obvious shrinkage of S. alterniflora was identified in three coastal cities including the city of Cangzhou of Hebei, Dongguan, and Jiangmen of Guangdong. S. alterniflora invaded mostly into mudflats (>93%) and shrank primarily due to aquaculture (55.5%). This study sheds light on the historical spatial patterns in S. alterniflora distribution and thus is helpful for understanding its invasion mechanism and invasive species management

    Monitoring 40-Year Lake Area Changes of the Qaidam Basin, Tibetan Plateau, Using Landsat Time Series

    Get PDF
    Areal changes of high-altitude inland lakes on the Qaidam Basin (QB) of the Tibetan Plateau are reliable indicators of climate change and anthropogenic disturbance. Due to the physical difficulties to access, our knowledge of the spatial patterns and processes of climatic and human impacts on the Basin has been limited. Focusing on lake area changes, this study used long-term Landsat images to map the patterns of lakes and glaciers in 1977, 1990, 2000, and 2015, and to monitor the spatially explicit changes of lakes between 1977 and 2015. Results revealed that the total number of lakes (area \u3e 0.5 km2 ) increased by 18, while their total area expanded by 29.8%, from 1761.5 ± 88.1 km2 to 2285.9 ± 91.4 km2 . Meanwhile, glaciers have decreased in area by 259.16 km2 in the past four decades. The structural equation model (SEM) was applied to examine the integrative effects of natural and anthropogenic factors on lake area. Precipitation change exhibited the most significant influence on lake area in the QB from 1977 to 2000, while human activities also played an important role in the expansion of lakes in the QB in the period 2000–2015. In particular, extensive exploitation of salt lakes as mining resources resulted in severe changes in lake area and landscape. The continuously expanding salt lakes inundated the road infrastructure nearby, posing great threats to road safety. This study shed new light on the impacts of recent environmental changes and human interventions on lakes in the Qaidam Basin, which could assist policy-making for protecting the lakes and for strengthening the ecological improvement of this vast, arid basin

    Rapid Invasion of Spartina alterniflora in the Coastal Zone of Mainland China: New Observations from Landsat OLI Images

    Get PDF
    Plant invasion imposes significant threats to biodiversity and ecosystem function. Thus, monitoring the spatial pattern of invasive plants is vital for effective ecosystem management. Spartina alterniflora (S. alterniflora) has been one of the most prevalent invasive plants along the China coast, and its spread has had severe ecological consequences. Here, we provide new observation from Landsat operational land imager (OLI) images. Specifically, 43 Landsat-8 OLI images from 2014 to 2016, a combination of object-based image analysis (OBIA) and support vector machine (SVM) methods, and field surveys covering the whole coast were used to construct an up-to-date dataset for 2015 and investigate the spatial variability of S. alterniflora in the coastal zone of mainland China. The classification results achieved good estimation, with a kappa coefficient of 0.86 and 96% overall accuracy. Our results revealed that there was approximately 545.80 km2 of S. alterniflora distributed in the coastal zone of mainland China in 2015, from Hebei to Guangxi provinces. Nearly 92% of the total area of S. alterniflora was distributed within four provinces: Jiangsu, Shanghai, Zhejiang, and Fujian. Seven national nature reserves invaded by S. alterniflora encompassed approximately one-third (174.35 km2) of the total area of S. alterniflora over mainland China. The Yancheng National Nature Reserve exhibited the largest area of S. alterniflora (115.62 km2) among the reserves. Given the rapid and extensive expansion of S. alterniflora in the 40 years since its introduction and its various ecological effects, geospatially varied responding decisions are needed to promote sustainable coastal ecosystems

    Impacts of climate change on Tibetan lakes: patterns and processes

    Get PDF
    High-altitude inland-drainage lakes on the Tibetan Plateau (TP), the earth’s third pole, are very sensitive to climate change. Tibetan lakes are important natural resources with important religious, historical, and cultural significance. However, the spatial patterns and processes controlling the impacts of climate and associated changes on Tibetan lakes are largely unknown. This study used long time series and multi-temporal Landsat imagery to map the patterns of Tibetan lakes and glaciers in 1977, 1990, 2000, and 2014, and further to assess the spatiotemporal changes of lakes and glaciers in 17 TP watersheds between 1977 and 2014. Spatially variable changes in lake and glacier area as well as climatic factors were analyzed. We identified four modes of lake change in response to climate and associated changes. Lake expansion was predominantly attributed to increased precipitation and glacier melting, whereas lake shrinkage was a main consequence of a drier climate or permafrost degradation. These findings shed new light on the impacts of recent environmental changes on Tibetan lakes. They suggest that protecting these high-altitude lakes in the face of further environmental change will require spatially variable policies and management measures

    Changes in habitat suitability for waterbirds of the Momoge Nature Reserve of China during 1990–2014

    Get PDF
    There is increasing empirical evidence that changes in habitat quality play an important role in determining species distributions and biodiversity. However, most research has focused on habitat quality, and we still lack approaches for tracking habitat quality dynamics. In this paper, by establishing qualitative and quantitative relationships between waterbird populations and key habitat indicators such as water abundance, food, shelter conditions and disturbance, we developed an object-oriented classification method, in conjunction with a geographic information systems (GIS) based centroid moving method, to assess habitat suitability dynamics for waterbirds at the Momoge Nature Reserve, China. Our results showed that habitat suitability improved during 1990–2000 and declined during 2000– 2014. Habitats with very good and good grades increased by 71.47 km2 (4.88%) during 1990–2000 and decreased by 200.66 km2 (13.78%) during 2000–2014. The habitat area with a good grade moved to the north, while the habitat area with a poor grade moved to the south during 1990–2014. This was mainly because the surrounding cropland area increased and shifted as oil and gas projects developed. These findings suggest that our object-oriented classification and centroid moving methods have great potential for use in biodiversity conservation and ecosystem management

    Heterogeneous responses of wetland vegetation to climate change in the Amur River basin characterized by normalized difference vegetation index from 1982 to 2020

    Get PDF
    Climate change affects wetland vegetation dramatically in mid- and high- latitudes, especially in the Amur River basin (ARB), straddling three countries and distributing abundance wetlands. In this study, spatiotemporal changes in average normalized difference vegetation index (NDVI) of wetland during the annual growing season were examined in the ARB from 1982 to 2020, and the responses of wetland vegetation to climatic change (temperature and precipitation) in different countries, geographic gradients, and time periods were analyzed by correlation analysis. The NDVI of wetland in the ARB increased significantly (p < 0.01) at the rate of 0.023 per decade from 1982 to 2020, and the NDVI on the Russian side (0.03 per decade) increased faster than that on the Chinese side (0.02 per decade). The NDVI of wetland was significantly positively correlated with daily mean temperature (p < 0.05, r = 0.701) and negatively correlated with precipitation, although the correlation was not significant (p > 0.05, r = −0.12). However, the asymmetric effects of diurnal warming on wetland vegetation were weak in the ARB. Correlations between the NDVI of wetland and climatic factors were zonal in latitudinal and longitudinal directions, and 49°N and 130°E were the points for a shift between increasing and decreasing correlation coefficients, closely related to the climatic zone. Under climate warming scenarios, the NDVI of wetland is predicted to continue to increase until 2080. The findings of this study are expected to deepen the understanding on response of wetland ecosystem to global change and promote regional wetland ecological protection

    National wetland mapping in China: a new product resulting from object-based and hierarchical classification of Landsat 8 OLI images

    Get PDF
    Spatially and thematically explicit information of wetlands is important to understanding ecosystem functions and services, as well as for establishment of management policy and implementation. However, accurate wetland mapping is limited due to lacking an operational classification system and an effective classification approach at a large scale. This study was aimed to map wetlands in China by developing a hybrid object-based and hierarchical classification approach (HOHC) and a new wetland classification system for remote sensing. Application of the hybrid approach and the wetland classification system to Landsat 8 Operational Land Imager data resulted in a wetland map of China with an overall classification accuracy of 95.1%. This national scale wetland map, so named CAS_Wetlands, reveals that China’s wetland area is estimated to be 451,084 ± 2014 km2, of which 70.5% is accounted by inland wetlands. Of the 14 sub-categories, inland marsh has the largest area (152,429 ± 373 km2), while coastal swamp has the smallest coverage (259 ± 15 km2). Geospatial variations in wetland areas at multiple scales indicate that China’s wetlands mostly present in Tibet, Qinghai, Inner Mongolia, Heilongjiang, and Xinjiang Provinces. This new map provides a new baseline data to establish multi-temporal and continuous datasets for China’s wetlands and biodiversity conservation
    • …
    corecore