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Climate change affects wetland vegetation dramatically in mid- and high-

latitudes, especially in the Amur River basin (ARB), straddling three countries

and distributing abundance wetlands. In this study, spatiotemporal changes in

average normalized difference vegetation index (NDVI) of wetland during the

annual growing season were examined in the ARB from 1982 to 2020, and the

responses of wetland vegetation to climatic change (temperature and

precipitation) in different countries, geographic gradients, and time periods

were analyzed by correlation analysis. The NDVI of wetland in the ARB

increased significantly (p < 0.01) at the rate of 0.023 per decade from 1982 to

2020, and the NDVI on the Russian side (0.03 per decade) increased faster than

that on the Chinese side (0.02 per decade). The NDVI of wetland was significantly

positively correlated with daily mean temperature (p < 0.05, r = 0.701) and

negatively correlated with precipitation, although the correlation was not

significant (p > 0.05, r = −0.12). However, the asymmetric effects of diurnal

warming on wetland vegetation were weak in the ARB. Correlations between the

NDVI of wetland and climatic factors were zonal in latitudinal and longitudinal

directions, and 49°N and 130°E were the points for a shift between increasing

and decreasing correlation coefficients, closely related to the climatic zone.

Under climate warming scenarios, the NDVI of wetland is predicted to continue

to increase until 2080. The findings of this study are expected to deepen the

understanding on response of wetland ecosystem to global change and promote

regional wetland ecological protection.
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1 Introduction

Vegetation responded dramatically to global climate change in

terrestrial ecosystems (Cramer et al., 2001). Wetlands, one of the

most important ecosystems, are critical to biodiversity conservation,

carbon sequestration, and hydrological and climate regulation (Mao

et al., 2021; Salimi et al., 2021). In addition to various ecological

functions, wetlands also have certain socioeconomic and cultural

values, such as recreation, tourism, and scientific research (Pedersen

et al., 2019). However, wetlands are the most vulnerable ecosystems

and changes in hydrology, soils, climate, and anthropogenic

disturbances all affect the ecological stability of wetlands (Bansal

et al., 2019). Wetland vegetation, the main component of wetland

ecosystems, is particularly susceptible to dramatic global climate

change (Erwin, 2009). Compared with vegetation in other

ecosystems, the unique growth environment of wetland vegetation

results in obvious differences in the responses of wetland vegetation

to climate change (Pang et al., 2017; Boulanger et al., 2018; Shen

et al., 2022). Therefore, understanding how wetland vegetation

changes in response to climatic change is essential for the

adaptive management and conservation of wetlands.

Climate change affects the growth of wetland vegetation

especially at the mid- and high-latitudes (Peng et al., 2020; Yuan

et al., 2020). The global climate is undergoing a change

characterized mainly by warming. Specifically, warming climate

has advanced spring phenology and delayed autumn phenology,

thereby extending the growing season of wetland vegetation

(Herfindal et al., 2012; Crabbe et al., 2016). Although increases in

precipitation can increase photosynthetic activity and promote

wetland vegetation growth (Peng et al., 2013; Chen et al., 2020),

seasonal increases in precipitation can adversely affect the

reproduction of wetland vegetation by raising water levels and

submerging vegetation (Bardecki, 1991). In previous studies,

changes in wetland vegetation in response to climate change in

several regions of the Northern Hemisphere were examined by

using vegetation indices (Herfindal et al., 2012; Liu et al., 2022; Ren

et al., 2022), such as normalized difference vegetation index (NDVI)

and enhanced vegetation index. However, due to geographical

differences, global climate change is spatially heterogeneous, and

different climatic factors have varying impacts on wetland

vegetation (Shen et al., 2022). Because of the heterogeneous

response of wetland vegetation to climate change, additional

research is needed that focuses on detailed analyses in order to

develop adaptive management and future conservation strategies,

especially in mid- and high latitudes.

As an important indicator of wetland vegetation health and

growth, NDVI has been widely used in regional monitoring of

changes in wetland vegetation and vegetation feedback on regional

climate (Di et al., 1994; Meneses-Tovar, 2011; Wei et al., 2022).

Because climate change is a long-term process, applying long time

series data to investigate the responses of wetland vegetation to

climate change can benefit understanding of processes of change in

wetland vegetation and future wetland adaptive management

(Hasselmann et al., 2003). Currently, data from sensors such as

the Advanced Very High Resolution Radiometer (AVHRR)

onboard the National Oceanic and Atmospheric Administration
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(NOAA) and Moderate Resolution Imaging Spectroradiometer

(MODIS) are widely used in analyzing the NDVI of wetland

dynamics (Fensholt and Sandholt, 2005; Albarakat and Lakshmi,

2019). Due to the limitation of data sources, in previous studies

based on MODIS NDVI, changes in wetland vegetation in response

to climate change were analyzed from 2000. However, it is difficult

to fully understand longer term changes in wetland vegetation on

the basis of those studies (Wang et al., 2020; Chen et al., 2023).

Continuous long time series of NDVI can accurately reflect long-

term trends in changes in wetland vegetation and abrupt changes

(Guo et al., 2021). The longest time series is the NOAA Climate

Data Record (CDR) of AVHRR NDVI data set, which is therefore

the most suitable data source to analyze wetland vegetation change

at both large scale and long time series (Peng et al., 2012). Moreover,

with advantages such as free, huge computing power and rapid

batch processing of data, the Google Earth Engine (GEE) cloud

platform allows acquisition and rapid processing of large-scale long

time series NDVI data sets. (Liu et al., 2018; Phan et al., 2020).

Therefore, the use of NOAA CDR of AVHRR NDVI data set and

GEE processing platform provides a possibility for long-term large-

scale wetland analysis.

The Amur River basin (ARB), the world’s ninth largest river

basin, is an area of wetland concentration in mid- and high-latitude

zones, where wetlands are particularly sensitive to global climate

change (Wang et al., 2019; Han et al., 2020). Compared with North

America and Europe in the same latitudes, wetland research is

limited in the ARB (Wang Y. et al., 2020; Mao et al., 2021). China

has higher temperatures and less precipitation, but more

anthropogenic activity than Russia, and as a result, responses of

wetland vegetation to climate change also differ (Chu et al., 2019).

Nevertheless, there is a lack of comparative studies that explore

changes in wetland vegetation and its response to climate change on

Chinese and Russian sides of the ARB. A comparative analysis of

environments in China and Russia would help provide a more

comprehensive understanding of wetland changes in the ARB and

support wetland conservation policies in both countries. In

addition, temperature data show faster warming during the night

than during the day in the past few decades in the ARB (Peng et al.,

2013), and asymmetric effects of monthly average daily maximum

temperature (TMX) and monthly average daily minimum

temperature (TMN) on the NDVI of wetland were observed on

Songnen (Wang Y. et al., 2020) and Sanjiang plains (Liu et al.,

2022), which are part of the basin. However, the asymmetric effects

differed on these plains. The NDVI of wetland was negatively

correlated with TMX and positively correlated with TMN during

the growing season on Songnen Plain (Wang Y. et al., 2020), but

increasing TMN was more effective in promoting wetland

vegetation growth than increasing TMX on Sanjiang Plain (Liu

et al., 2022). Until recently, previous studies have been limited to

small-scale analyses, and it has remained unclear whether there are

long-term asymmetric effects of diurnal warming on wetland

vegetation in the entire ARB. To accurately predict future changes

in wetland vegetation, it is also necessary to explore the responses of

wetland vegetation to changes in diurnal temperatures.

In this paper, therefore, the heterogeneous responses of wetland

vegetation to climate factors in the ARB were examined from 1982
frontiersin.org
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to 2020. The specific objectives were to (1) explore spatiotemporal

changes in wetland vegetation in the ARB during the growing

season from 1982 to 2020; (2) examine the responses of wetland

vegetation to climate change in different countries, geographic

gradients, and time periods; and (3) predict the effects of future

climate change on wetland vegetation in the ARB. The study is

expected to provide theoretical support for the conservation and

restoration of wetlands.
2 Materials and methods

2.1 Study area

The ARB spans latitudes from 41.72°N to 55.90°N and

longitudes from 108.05°E to 141.13°E. It is a transboundary

region of three countries (Figure 1), with 48% of the basin in

Russia, 43% in China, and 9% in Mongolia, and a total area of 2.08

million km2 (Mao et al., 2021). The Greater Khingan Mountains

divide the ARB into two relatively different climates. The western

ARB is relatively dry, with annual precipitation of only 250 mm–

400 mm, whereas the eastern ARB is relatively wet, with annual

precipitation of 400 mm–700 mm. The ARB passes through humid,

semi-humid and semi-arid zones, with boundaries between the

three zones at 130°E and 120°E, respectively, which is continental

monsoon climate. Annual average temperature is between −8°C and

6°C, decreasing gradually from south to north, with clear spatial

variability. The basin straddles two temperature zones from south

to north, mid-temperate and frigid-temperate zones, with the

boundary between the two zones at 50°N. There are many rivers

and developed water systems that crisscross the basin, interacting to

form the Songnen and Sanjiang plains in the east, with lower

elevations than those of the mountains in the east. The ARB has

a large wetland area that is relatively concentrated in the Greater
Frontiers in Plant Science 03
Khingan Mountains and Songnen and Sanjiang plains. The main

wetland vegetation types common in this basin are Typha orientalis,

Phragmites australis, and Scirpus triqueter, and the water level of

suitable wetlands is gradually declining. The wetlands provide

important resting places for multitudes of migratory waterfowl on

the East Asian–Australasia flyway (Jia et al., 2020). The total

wetland area of the ARB is 0.17 million km2, accounting for 8.1%

of the ARB (Yang et al., 2020). However, there were fewer wetlands

located in Mongolia, and almost no unchanged wetlands, extracted

by the wetland data, were located in Mongolia, so we mainly

analyzed the changes of wetlands in the Chinese and Russian sides.
2.2 Data source

2.2.1 NDVI data
The NOAA CDR of AVHRR NDVI version 5 was used in this

study. The resolution was 0.05°, and the interval was 1 day. Free

images were collected in the growing season (May–September)

from 1982 to 2020 on the GEE cloud platform (https://

earthengine.google.com/). Monthly NDVI data were obtained by

the maximum value composite method, which chose the largest

value of each pixel in the multitemporal data to reduce the

interference of atmospheric and solar zenith angle (Wang et al.,

2005), and projection processing and clipping were processed

on GEE.

2.2.2 Climatic data
Climatic data were acquired from the monthly gridded Climatic

Research Unit Time-Series Data version 4.05(CRU TS 4.05,

available at https://crudata.uea.ac.uk/cru/data/hrg/). The CRU TS

data were produced by the CRU at the University of East Anglia

with a resolution of 0.5° and a long time series from 1901 to 2020.

The data have been widely used in studies on climate change and on
FIGURE 1

Location of the Amur River basin and its spatial terrain pattern.
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vegetation growth (Chu et al., 2019; Meng et al., 2019). In this study,

four types of climatic factors acquired from CRU TS 4.05 were used

to analyze the effect of climate on wetland vegetation change,

including daily mean temperature (TMP), TMX, TMN, and

precipitation (PRE). To study asymmetric effects of diurnal

warming on wetland vegetation in the ARB, TMX and TMN were

used to represent daytime and nighttime temperatures, respectively.

To coordinate data sets, the spatial resolution of temperature and

precipitation data was resampled to 0.05° by using the nearest

neighbor method.

2.2.3 Wetland data
Wetland distribution data were extracted from up-to-date land

cover data in the ARB in 1980 and 2016 (Mao et al., 2020). Natural

wetlands in this study were vegetated wetlands, including marsh,

swamp, bog, and fen. Land cover data were classified from Landsat

TM/OLI images by an object-based image analysis and hierarchical

decision–trees classification method, including multiresolution

segmentation, designing place-based hierarchical decision trees,

and rule-based object identification (Mao et al., 2020). The data

were obtained from the Northeast branch of the National Earth

System Science Data Center (http://wetland.igadc.cn/). Accuracy of

the data was verified by field investigations and Google Earth

images with overall classification accuracy values larger than 90%

(Mao et al., 2021), which showed that the wetland data were reliable

to explore the responses of wetland vegetation to changes. For the

analysis of NDVI trends and its relations with climatic factors,

wetlands existing both in 1980 and 2016 were extracted as

unchanged wetlands from 1980 to 2016 in the ARB, with a total

area of 0.12 million km2.

2.2.4 Future climate data
The future temperature and precipitation data used in this study

were produced from the CNRM–ESM2–1 global climate model of

the Scenario Model Intercomparison Program (ScenarioMIP)

under International Coupled Model Intercomparison Program

Phase 6 (CMIP6, available at https://esgf-node.llnl.gov/search/

cmip6/). The CNRM–ESM2–1 model provided by CMIP6 was

derived from the French National Meteorological Center, with a

spatial resolution of 1.4° × 1.4°. The combination scenarios of

Shared Socioeconomic Pathways (SSPs) and Representative

Concentration Pathways (RCPs) incorporates the impact of

socioeconomic development (Su et al., 2021), which are widely

used in regional climate change prediction (Yang et al., 2020; Ren

et al., 2023). SSP1–RCP2.6 is a low-forcing scenario, and SSP5–

RCP8.5 is a high-forcing scenario.
2.3 Methods

2.3.1 Sen+Mann–Kendall method
In this study, we have used Sen+Mann–Kendall method based

on the R 4.2.1 to analyze trends from 1982 to 2020 for the NDVI of

wetland vegetation and four climatic factors (PRE, TMP, TMX, and
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TMN). Due to the strong resistance to measurement errors and

abnormal data, the Sen+Mann–Kendall method has been

increasingly used to analyze trends in long term series data for

vegetation (Li et al., 2021; Wu et al., 2021), (Li et al., 2021).

Theil–Sen median trend analysis is a non-parametric statistical

trend calculation method (Sen, 1968). The formula is as follows:

X(t) = Qt + B

where X(t) is the time series data of climate and NDVI, Q is the

slope of the data, and B is a constant.

Qmedian = Median
Xj − Xi

j − i

� �

whereQmedian is the median ofQ sorted from smallest to largest.

When Qmedian > 0, the climate or NDVI time series has an

increasing trend, whereas when Qmedian< 0, a decreasing trend

is indicated.

The Mann–Kendall trend test is a non-parametric statistical test

method that determines the significance of trends (Kendall, 1948).

The formula is as follows:

S =on−1
i=1on

j=i+1sgn Xj − Xi)
�

where n is the length of the time series (39 years in this study),

and sgn(Xj–Xi) is the sign function, defined as follows:

sgn(Xj − Xi) =

−1     if  Xj − Xi < 0

    0     if  Xj − Xi = 0

    1     if  Xj − Xi > 0

8>><
>>:

For the time series data X(t), the statistic Z is defined as follows:

Z =

S+1ffiffiffiffiffiffiffiffiffiffi
Var(S)

p S < 0

  0 S = 0

S−1ffiffiffiffiffiffiffiffiffiffi
Var(S)

p S > 0

8>>><
>>>:

where Var(S) = n(n−1)(2n+5)
18 . When Z > 0, the variable shows an

upward trend; when Z< 0, the variable shows a downward trend. In

addition, when |Z| > 1.96, the time series has significant variation at

the level of 0.05 (Liu et al., 2019). According to the significance of

trends, variations in NDVI trends were classified into three types:

significant increase (slope > 0, p < 0.05), significant decrease (slope<

0, p < 0.05), and nonsignificant change (p > 0.05).
2.3.2 Hurst exponent
We have used Hurst exponent to investigate whether trends of

the NDVI of wetland vegetation was sustainable in the ARB from

1982 to 2020. The method was proposed by Hurst (1951) in the

analysis of hydrological data and then improved by Mandelbrot and

Wallis (1969). The method has been successfully applied in studies

investigating vegetation changes (Jiang et al., 2017). The basic

calculations are as follow:

1) Divide the time series fNDVI(t)g(t = 1, 2,⋯, n) into t sub

series X(t), for each series t = 1, 2,⋯, t.
frontiersin.org
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2) Define the mean sequence of the time series,

NDVI(t) =
1
to

t
t=1NDVI(t)

3) Calculate the accumulated deviation,

X(t) =ot
t=1(NDVI(t) − NDVI(t))  1 ≤ t ≤ t

4) Create the range sequence,

R(t) = max
1≤t≤t

X(t,t) − min
1≤t≤t

X(t,t)  t = 1, 2,⋯, n

5) Create the standard deviation sequence,

S(t) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
t o

t
t=1(NDVI(t) − NDVI(t))

2

r
  t = 1, 2,⋯, n

6) Calculate the Hurst exponent

R(t)

S(t)
= (ct)H

The value of H is obtained by fitting the equation log(R=S)n =

a +H � log(n), which can be used to determine whether the time

series fNDVI(t)g is completely random or persistent. According to

previous studies, the value of the Hurst exponent, ranging from 0 to

1, is classified into three types. When 0.5 <H< 1, the trend of change

in NDVI in the future will be consistent with that in the past. When

H = 0.5, the NDVI time series is random and there is no long-term

correlation. When 0 < H< 0.5, the trend in the future will be the

opposite of that in the past.
2.3.3 Sequential Mann–Kendall test
The sequential Mann–Kendall (SQMK) test was used to identify

the change point of NDVI of wetland vegetation and four climatic

factors (PRE, TMP, TMX, and TMN) from 1982 to 2020. The

SQMK test, developed by Sneyers (1991), is used to detect abrupt

change points in long-term data series. The steps of the SQMK test

are the following:

1) For a time, series with n sample sizes X {X1, X2,…, Xn}, a rank

sequence is constructed as follows:

Sk =ok
i=1Ri (k = 2, 3,⋯, n)

where Ri is the cumulative number of samples when Xi >

Xj(1 ≤ j ≤ i).

2) Under the assumption of random independence of time

series, the statistics are defined as follows:

UFk =
Sk − E(Sk)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(Sk)

p  (k = 1, 2,⋯, n)

where UF1 = 0, E(Sk) and Var(Sk) are the mean and variance of

the cumulative number Sk, respectively. When X{X1, X2,…, Xn} is

independent of the others and has the same continuous

distribution, E(Sk) =
n(n−1)

4 , and Var(Sk) =
n(n−1)(2n+5)

72 . For a given

significance level a, UFk > UFa indicates a significant trend change

in the sequence of X.
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3) The time series data are arranged in reverse order, and the

above calculation is repeated to obtain UBk, indicated as follows:

UBk = −UFk

4) When the significance level a is set to 0.05, as in this study,

the value of U1-a/2 is ± 1.96 (Wang R. et al., 2020). The intersection

points of UF and UB curves indicate the abrupt change year in a

time series trend (Mosmann et al., 2004).

2.3.4 Correlation analysis method at the scale
of pixels

A correlation coefficient method at the scale of pixels was used

to evaluate correlations between NDVI and climatic factors (TMP,

TMX, TMN, and PRE) from 1982 to 2020. The method was

processed in ArcGIS based on the ArcPy tool, which can

investigate possible effects of climate change on NDVI. The

formula is as follows:

rxy =
on

i=1(xi − �x)(yi − �y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(xi − �x)2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

on
i=1(yi − �y)2

q

where rxy is the correlation coefficient between variables x and y,

ranging from −1 to 1, n is the number of years, xi is the value of the

NDVI for year i, yi is the value of the climatic factors (TMP, TMX,

TMN, and PRE) for year i, and �x and �y are the averaged NDVI and

the mean of the climatic factors, respectively, which were obtained

from the averages of all pixels assigned to wetlands (Chen et al.,

2018). When rxy > 0, the NDVI of wetland vegetation and the

climatic factors were positively correlated. When rxy < 0, the two

variables were negatively correlated.

Moreover, the correlations of NDVI with climatic factors were

classified into four major categories: significant positive correlations

(p < 0.05), nonsignificant positive correlations (p > 0.05), significant

negative correlations (p < 0.05), and nonsignificant negative

correlations (p > 0.05). In addition, we considered the lag effects

of precipitation, so we calculated the correlation coefficients

between the NDVI of the current year and the precipitation of

the previous year and the previous 2 years.

2.3.5 Partial correlation analysis
Partial correlation analysis was used to calculate the partial

correlation coefficients between PRE, TMP, and NDVI, respectively,

to examine interaction term between temperature and precipitation.

When the dependent variable is correlated with two or more

independent variables, partial correlation analysis is used to

investigate the correlation between one independent variable and

the dependent variable by excluding the influence of another

independent variable (Cao et al., 2014).

The formula is as follows:

rxy : z =
rxy − rxzryzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1 − r2xz)(1 − r2yz)
q

where rxy, rxz, and ryz is the correlation coefficient between variables

x and y, x and z, and y and z, respectively, ranging from −1 to 1, rxy.z is
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the partial correlation coefficient between rxy and rxz fixed ryz. The

value of the partial correlation coefficient ranges from +1 to −1.
3 Results

3.1 Spatiotemporal changes in the NDVI of
wetland in the ARB

At the basin scale, the mean NDVI of wetland in the growing

season showed a significantly increasing trend (p < 0.01) from 1982 to

2020 with a growth rate of 0.023 per decade, although there was a

minimum value in 2003 (Figure 2A). At the pixel scale, relatively large

the NDVI of wetland values were mainly distributed in the eastern

and central parts of the ARB, such as the Greater and Lesser Khingan

mountains and the eastern Russian side. Relatively small NDVI

values were mainly distributed in the southwestern part of the basin.

According to Sen+Mann–Kendall analysis, variations in the

NDVI of wetland from 1982 to 2020 in the ARB had apparent

spatial heterogeneity (Figure 2B). With the Greater Khingan

Mountains as a border, the NDVI of wetland primarily decreased

in the relatively dry western region but increased in the relatively

wet eastern region. In the ARB, 89.85% of pixels experienced

significant increases (p < 0.05) in NDVI in the growing

season (Figure 2C).

The mean value of the NDVI Hurst index for wetland

vegetation was 0.71. As shown in Figure 2D, the Hurst index

exceeded 0.5 in much of the ARB. Pixels with Hurst index values

between 0.5 and 0.7 and greater than 0.7 accounted for 25.58% and

74.21%, respectively.
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On the Chinese side of the ARB, the average the NDVI of

wetland was 0.59, the trend of increase in average NDVI was 0.02

per decade, and the average Hurst index was 0.68. However, on the

Russian side, the average the NDVI of wetland was 0.65, the trend of

increase in average NDVI was 0.03 per decade, and the average

Hurst index was 0.73. Thus, in the comparative analysis of Chinese

and Russian sides, values on the Russian side were all higher than

those on the Chinese side.

According to the SQMK test, the NDVI of wetland values in the

ARB from 1982 to 2020 changed abruptly in 2000 (Figure 3A).

During 1982–2000, the average NDVI fluctuated between 0.55 and

0.65, and the trend in the NDVI of wetland in the ARB was clearly

one of increase. However, during 2000–2020, although the average

NDVI fluctuated between 0.60 and 0.70, no significant trend of

increase was observed (Figure 3B).
3.2 Spatiotemporal change in climatic
factors in the Amur River basin

From 1982 to 2020, increasing trend of PRE, TMP, TMX, and

TMN were observed at different levels (Figure 4). The PRE had a

growth rate of 1.5 mm per decade, and temperature (TMP, TMX,

and TMN) increased significantly with a growth rate of 0.2°C per

decade. In terms of spatial changes, PRE showed a downward trend

in the west, mainly in the Songnen Plain, but an upward trend in the

east, mainly in the Sanjiang Plain, with the reversal line at

approximately 130°E. The temperature increase was higher in the

western ARB than in the eastern ARB. On the Chinese side, PRE

showed a downward trend, whereas on the Russian side, it showed
A B

DC

FIGURE 2

Spatial pattern of wetland normalized difference vegetation index (NDVI) in the Amur River basin from 1982 to 2020. (A) Spatial distribution of the
average NDVI of wetland during the annual growing season, inset shows the temporal changes of NDVI; (B) spatial pattern in temporal trend (per
decade) of NDVI; (C) spatial distribution of trend types; (D) spatial pattern in Hurst exponent of NDVI. The pie charts illustrate the area percentage of
NDVI trends and sustainable characteristics.
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an upward trend, indicating clear spatial heterogeneity. The

magnitude of temperature increase in China was significantly

higher than that in Russia.

From 1982 to 2020, an SQMK test revealed the abrupt change

point in PRE occurred in 2019 (Figure 5). During the 4 decades, two

break points in TMP occurred in 2000 and 2019, one break point in

TMX occurred in 1998, and three break points in TMN occurred in

2006, 2018, and 2019.

Because abrupt changes in both NDVI and TMP occurred in

2000, the interannual variation in each climatic factor was analyzed

in two stages separated by 2000 (Figure 5). Precipitation showed an

overall decreasing trend from 1982 to 2000 but an increasing trend
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from 2000 to 2020. Daily mean temperature exhibited an increasing

trend from 1982 to 2000 but a decreasing trend from 2000 to 2020.

The trends in TMX were almost the same as those in TMP, but the

trend in TMN was continuous increase in both periods.

According to the CNRM-ESM2-1 model, the climate will

become warmer and drier under the SSP126 scenario (low-

emission scenario) in the ARB in the growing season from 2021

to 2080, but under the SSP585 scenario (high-emission scenario), it

will become warmer and wetter (Figure 6). In addition, the growth

rate in TMN will be higher than that in TMX under the SSP585

scenario, whereas the difference will be not obvious under the

SSP126 scenario.
A B

DC

FIGURE 4

Spatiotemporal changes in (A) precipitation (PRE), (B) daily mean temperature (TMP), (C) monthly average daily maximum temperature (TMX), and
(D) monthly average daily minimum temperature (TMN) in the Amur River basin from 1982 to 2020. p < 0.05 and p < 0.01 indicate significance at the
95% and 99% levels.
A B

FIGURE 3

Abrupt and temporal changes in wetland normalized difference vegetation index (NDVI) in the Amur River basin (ARB) from 1982 to 2020: (A) abrupt
change of the NDVI of wetland using SQMK test. Dotted horizontal straight lines indicate the lower limit and upper limit of 95% confidence interval.
(B) temporal changes of the NDVI of wetland in the ARB during 1982–2000 and 2000–2020. p < 0.05 and p < 0.01 indicate significance at the 95%
and 99% levels.
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FIGURE 5

Abrupt change in (A, B) precipitation (PRE), (C, D) daily mean temperature (TMP), (E, F) monthly average daily maximum temperature (TMX), and
(G, H) monthly average daily minimum temperature (TMN) in the Amur River basin.
A B

FIGURE 6

Future climate under (A) SSP126 and (B) SSP585 scenarios in the growing season from 2021 to 2080 in the Amur River basin.
Frontiers in Plant Science frontiersin.org08

https://doi.org/10.3389/fpls.2023.1290843
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xing et al. 10.3389/fpls.2023.1290843
3.3 Spatiotemporal patterns of correlations
between the NDVI of wetland and
climatic factors

Table 1 shows the correlations between the NDVI of wetland

and the four climatic factors throughout the ARB. In terms of

temporal correlation, the NDVI of wetland in the ARB was

significantly and positively correlated with TMP, TMX, and TMN

(p < 0.05) and negatively correlated with PRE (p > 0.05). The highest

correlation was with TMP (r = 0.701). On both Chinese and Russian

sides of the ARB, the NDVI of wetland was significantly and

positively correlated with temperature (p < 0.05) but negatively

correlated with PRE. In addition, partial correlation analysis

revealed that TMP remained significantly and positively

correlated with NDVI, while PRE was negatively correlated with

NDVI except for Chinese side. In terms of the lag effects of

precipitation and NDVI, the correlation coefficients between the

NDVI of the current year and the precipitation of the previous year

and the previous 2 years were −0.7 (p > 0.05) and 0.157 (p >

0.05), respectively.

Spatially, there was a weak negative correlation between the

NDVI of wetland and PRE in the central ARB, whilst the NDVI of

wetland was positively correlated with PRE in the eastern and

western ARB (Figure 7). At the pixel scale, 86.66% of the ARB

showed significant positive correlations between the NDVI of

wetland and TMP (p < 0.05), distributed throughout the ARB

except in the west. Positive correlations between NDVI and TMX

and between NDVI and TMN were mainly in the central and

eastern ARB. On the Chinese side of the ARB, correlations between

the NDVI of wetland and PRE were primarily negative, whereas on

the Russian side, there were both positive and negative correlations

between the NDVI of wetland and PRE. The NDVI of wetland was

significantly and positively correlated with temperature on both

Chinese and Russian sides of the ARB.

According to the analysis of the two stages with 2000 as the

node, correlations between the NDVI of wetland and the four

climatic factors varied in different time periods and different

countries (Table 2). There was a weak asymmetric effect of

diurnal warming on wetland vegetation in the ARB during 2000–

2020, which means Pearson correlation coefficients between NDVI

and TMX and TMN are smaller than 0.2 and significances are

greater than the 0.05 level. The NDVI of wetland was positively

correlated with daily maximum temperature but negatively

correlated with daily minimum temperature. On Chinese and
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Russian sides of the ARB during the two periods, the NDVI of

wetland was primarily negatively correlated with PRE and

significantly and positively correlated with TMP (p< 0.01).

Nevertheless, on the Russian side, NDVI and PRE were positively

correlated during 1982–2000, and NDVI and TMP were negatively

correlated during 2000–2020.

Pronounced latitudinal and longitudinal zonal variability was

observed among correlation coefficients (Figure 8). With an

increase in latitude, correlation coefficients between NDVI and

TMP increased before decreasing, whereas those between NDVI

and PRE decreased before increasing. However, in the longitudinal

direction, trends in correlation coefficients between NDVI and

TMP and PRE were opposite to those in the latitudinal direction.

Notably, 49°N and 130°E were apparent points for the change

between increasing and decreasing correlation coefficients.
4 Discussion

4.1 The NDVI of wetland dynamics and its
relations with climatic factors

The NDVI of wetland showed a significant upward trend during

1982–2020, which was primarily attributed to increases in

temperature and precipitation. A warm and humid environment

is conducive to the growth of wetland vegetation (Burkett and

Kusler, 2000). Higher temperature can increase greater

photosynthetic intensity, which played an important role for the

growth of vegetation (Sharma et al., 2020). The percentage increase

in the NDVI trend and the Hurst index indicated good overall

growth of wetland vegetation during the four decades examined in

this study. In addition, according to the results of Hurst exponent,

the predicted future change in the NDVI of wetland trend in the

ARB was consistent with that of the past trend (Figure 2D). The

minimum point of the NDVI of wetland occurred in 2003 but

temperature, affected vegetation growth strongly, was not the lowest

value, and precipitation was not strongly correlated with wetland

vegetation. However, the minimum point of precipitation occurred

in 2001, so we considered whether the minimum NDVI in 2003

could be caused by the lagging effect of precipitation and spring

drought led to a large reduction. The correlation coefficients

were −0.7 (p > 0.05) and 0.157 (p > 0.05), respectively, which

indicated that there were lag effects of PRE on the NDVI of wetland

in the ARB.
TABLE 1 Pearson correlation coefficients between NDVI and temperature (daily mean temperature, TMP; monthly average daily maximum
temperature, TMX; monthly average daily minimum temperature, TMN) and precipitation (PRE) and partial correlation coefficients between NDVI and
TMP and PRE in the Amur River basin and different nations during 1982–2020.

Study area
Pearson correlation coefficients Partial correlation coefficients

RNDVI_PRE RNDVI_TMP RNDVI_TMX RNDVI_TMN RNDVI_PRE RNDVI_TMP

ARB −0.12 0.701** 0.423** 0.386* −0.016 0.648**

Chinese side −0.224 0.728** 0.413** 0.487** 0.018 0.655**

Russian side −0.052 0.608** 0.350* 0.340* −0.044 0.556**
* and ** represent significance at the 0.05 level and the 0.01 level, respectively.
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According to the SQMK test, average the NDVI of wetland in

the ARB increased after 2000. The increase in average NDVI was

probably attributed to recognition of the importance of wetlands

beginning in the late 1990s and China’s promulgation of the

China Action Plan for Wetland Conservation in 2000 (Chen

et al., 2018). In addition, Northeast China responded positively

to the national policy. For example, Heilongjiang Province

promulgated the Decision on Wetland Protection in 1998 and

the Heilongjiang Wetland Protection Regulations in 2003 (Cui,

2006). However, the rate of increase in the NDVI of wetland

slowed after 2000, which was likely associated with the decline in

TMP during 2000–2020. The global warming interruption from

1999 onward resulted in a weak cooling trend in TMP (Fyfe et al.,

2013; Karl et al., 2015), also called the warming interval (Li et al.,

2015). Because the abrupt changes in both NDVI and TMP

occurred in 2000, it also confirmed that the NDVI of wetland in

the ARB was mostly influenced by TMP. Increases in temperature
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lead to increases in photosynthetic intensity of plants (Sharma

et al., 2020), thus promoting the growth of vegetation in the

growing season, according to Yang et al. (2020). In further analysis

of the relations between NDVI and daytime and nighttime

temperatures in the ARB, weak asymmetric effects of diurnal

warming on wetland vegetation were detected during 2000–

2020. The growing season NDVI of wetland vegetation was

positively correlated with TMX and negatively correlated with

TMN, which is consistent with the Peng et al. (2013). Wetland

vegetation perform photosynthesis during the daytime, and

increasing TMX can enhance photosynthetic enzyme activity

and carbon dioxide concentration, thus promoting vegetation

growth (Lucht et al., 2002; Beer et al., 2010). Respiration in

plants occurs mainly at night, via enhanced autotrophic

respiration and produced a compensatory stimulation of

photosynthesis the next day (Wan et al., 2009), which could

partly explain the positive correlation between NDVI and TMN.
TABLE 2 Pearson correlation coefficients between normalized difference vegetation index (NDVI) and four climatic factors in different regions during
two periods.

Periods Study area PRE TMP TMX TMN

1982–2000

ARB 0.178 0.642** 0.302 0.291

Chinese side −0.009 0.602** 0.325 0.245

Russian side 0.178 0.622** 0.27 0.291

2000–2020

ARB −0.354 0.351 0.14 −0.012

Chinese side −0.168 0.259 0.07 0.011

Russian side −0.391 −0.011 0.15 0.319
frontie
* and ** represent significance at the 0.05 level and the 0.01 level, respectively.
A B

DC

FIGURE 7

Spatial patterns of correlations between normalized difference vegetation index (NDVI) and (A) precipitation (PRE), (B) daily mean temperature (TMP),
(C) monthly average daily maximum temperature (TMX), and (D) monthly average daily minimum temperature (TMN) in the Amur River basin during
1982–2020. The pie charts illustrate the area percentage of different spatial patterns of the correlations.
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4.2 Wetland vegetation changes in
response to climate change at
multiple scales

The growing season trends in the NDVI of wetland and its

responses to climate change on Chinese and Russian sides of the

ARB had obvious spatial heterogeneity. The NDVI of wetland was

primarily negatively correlated with PRE and significantly positively

correlated with TMP on the Chinese and Russian sides.

Nevertheless, PRE had a positive effect on the NDVI of wetland

in Russia during 1982–2000, possibly because adequate water

promoted wetland vegetation growth. Russia is geographically

closer to the sea than China; affected by the position of sea and

land, there was more precipitation in Russia, especially in the east of

Russia (Figure 4). During 2000–2020, the NDVI of wetland and

TMP were negatively correlated on the Russian side, which might

be associated with permafrost degradation under a warming

climate. Permafrost covers 60% of the entire basin (Avis et al.,

2011), and many wetlands in cold regions live in symbiosis with

permafrost. Permafrost prevents precipitation and runoff from

percolating into the ground, and excessive surface moisture

inhibits aerobic bacterial activity, and promotes peat

accumulation, which contributes to the growth of wetland

vegetation (Jin et al., 2008). China is located in a mid-temperate

region with higher temperature, which is the strong climatic factor

affecting vegetation growth. However, the growth of wetland

vegetation on the Russian side was better than that on the

Chinese side. This discrepancy could be attributed to not only the

influence of climate but also the different intensity of human activity

(Mao et al., 2021). In addition, over-cultivation of rice in

northeastern China, an important grain production base,
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competes with wetlands for water (Zou et al., 2018). Surface water

is reintroduced from the subsurface to irrigate farmland in some

areas due to excessive oxidative enrichment, resulting in a decline in

wetland water levels (Zhou et al., 2021).

Notably, correlation coefficients between NDVI and PRE and

TMP in the ARB were zonal in latitudinal and longitudinal

directions, and 49°N and 130°E were the apparent turning points

between increasing and decreasing correlation coefficients. In the

latitudinal direction, 49°N is roughly consistent with the boundary

between mid-temperate and frigid-temperate zones (Wang et al.,

2021). In the frigid-temperate zone, relatively high temperatures are

associated with increases in effective soil nitrogen, which promote

wetland vegetation growth by increasing photosynthetic intensity of

the vegetation (Amundson et al., 2003). In addition, increases in

rainfall are associated with an increase in cloud cover and a decrease

in sunlight, which may limit vegetation growth (Mao et al., 2012). In

the longitudinal direction, 130°E is roughly consistent with the

boundary between humid and semi-humid zones (Zhang et al.,

2019). The eastern part of the ARB is primarily in the humid region,

whereas the western part is in the semi-humid region. In semi-

humid areas, wetland vegetation is hydrophilic, and PRE is the main

factor influencing its growth (Li et al., 2013). However, with an

increase in longitude in the humid area, excessive PRE leads to the

drowning and death of some wetland vegetation (Figure 9),

including Phragmites australis and Scirpus triqueter, which are

the dominant wetland vegetation in the ARB (Xie et al., 2008).

Except for the drowning of wetland vegetation, the increase of

clouds and the reduction of sunshine caused by excessive PRE

inhibits the growth of wetland vegetation (Yang et al., 2020).

Therefore, correlation coefficients between PRE and NDVI

decreased, and TMP was a major factor affecting vegetation growth.
A

B

FIGURE 8

Changes in correlation coefficients between normalized difference vegetation index (NDVI) and temperature and precipitation (PRE) in (A) latitudinal
and (B) longitudinal directions.
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4.3 Projection of future climate change
effects on wetland vegetation in the Amur
River basin

The warming and wetting in the ARB during the 4 decades of

this study are consistent with results of previous researches (Yu

et al., 2013; Chu et al., 2019). According to the observations and the

analysis of data by various organizations, global climate change is

dramatic (IPCC, 2007; Potter et al., 2017). In the future, the climate

warming trend will continue in the Northern Hemisphere (Salinger,

2005). In the ARB, temperature and precipitation are predicted to

increase by the end of the 21st century under the SSP585 scenario

(Yang et al., 2021), and the area of marshland is predicted to

increase on the Songnen and Sanjiang plains (Chen et al., 2018).

Compared with Canada in the same latitudes, the future warmer

and wetter climate will favor increased wetland abundance in the

western prairies (Zhang et al., 2021). Future climate change (i.e.,

warming, variation in precipitation) will affect the growth of

wetland vegetation through photosynthesis, respiration and

transpiration. In order to predict future climate change

conditions, CMIP6 developed different emission scenarios to

simulate different possible socioeconomic developments (O'Neill

et al., 2016). SSP–RCP was widely used in regional climate change

prediction (Yang et al., 2020; Ren et al., 2022). To further explore

the future growth of wetland vegetation in the entire ARB, the

NDVI of wetland from 2021 to 2080 was predicted selecting SSP1–

RCP2.6 (SSP126) and SSP5–RCP8.5 (SSP585).

Under the SSP126 scenario, warming in the future will increase

the NDVI of wetland (Sharma et al., 2020), and the relatively dry

but still humid conditions will encourage growth of wetland

vegetation in the future (Xie et al., 2008). Under the high-

emission scenario, the NDVI of wetland will also show an

upward trend from 2021 to 2080, because temperature will have a

greater effect on the growth of wetland vegetation than that of
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precipitation in the ARB (Table 1). Notably, in the humid area, an

increase of precipitation will cause a decrease in NDVI (Mao et al.,

2012). In terms of diurnal temperature, the negative effect of the

rapid rise in TMN on the NDVI of wetland will gradually increase

and might even exceed the positive effect of TMX in the future.
5 Conclusions

Based on NDVI and CRU data, this study investigated

spatiotemporal changes in the NDVI of wetland and its responses

to climate change in the ARB during 1982–2020 in different

countries, geographic gradients, and time periods. From 1982 to

2020, the NDVI of wetland increased significantly (p < 0.01) at the

rate of 0.023 per decade, but the increasing rate gradually slowed.

Approximately 89.85% of the total basin experienced significant

increases in the NDVI of wetland in the growing season (p < 0.05).

Correlation analysis and SQMK method both indicated that the

NDVI of wetland responded most strongly to TMP. Asymmetric

diurnal warming was detected during 2000–2020 by comparing the

trend in TMX with that in TMN. The NDVI of wetland was

positively correlated with TMX (r = 0.14, p > 0.05), but it was

negatively correlated with TMN (r = −0.012, p > 0.05). The

influence of PRE on wetland was weak and not significant. In

addition, correlations between the NDVI of wetland and climatic

factors were zonal in latitudinal and longitudinal directions. Under

the SSP126 and SSP585 scenarios, the climate will become warmer,

and the NDVI of wetland in the ARB is predicted to increase until

2080. Note that the negative effect of the rapid rise in TMN on the

NDVI of wetland will gradually increase and might even exceed the

positive effect of TMX in the future. The climatic factors affecting

wetland NDVI are not only temperature and precipitation, but also

solar radiation and wind speed et al. In addition to climate factors,

human activities also have a great impact on wetlands, and human
A B

FIGURE 9

Excessive PRE condition in the ARB (A) and the brown parts indicate the death of the wetland vegetation (B).
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factors were rarely discussed in this study. The findings of this study

are expected to provide support for wetland conservation and

sustainable management in the ARB.
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