158 research outputs found

    Understanding the dynamic momentum aperture of the Advanced Light Source

    Get PDF
    The lifetime of a light source with small emittance like the Advanced Light Source (ALS) is usually limited by the momentum acceptance of the ring. Large momentum acceptances are reached by providing enough RF voltage and by avoiding a degradation of the dynamic momentum aperture. At the ALS the size of the momentum acceptance depends strongly on the transverse dynamics. It is very sensitive to machine conditions such as the tunes and chromaticities since depending on those conditions the Touschek scattered particles explore different resonance regions in the phase space. In this paper we show that by using a single-turn ’pinger’ magnet together with turn-byturn beam position monitors (BPM) one can identify the cause of a reduction in momentum acceptance and take steps to improve the acceptance

    First Observation of Self-Amplified Spontaneous Emission in a Free-Electron Laser at 109 nm Wavelength

    Get PDF
    We present the first observation of Self-Amplified Spontaneous Emission (SASE) in a free-electron laser (FEL) in the Vacuum Ultraviolet regime at 109 nm wavelength (11 eV). The observed free-electron laser gain (approx. 3000) and the radiation characteristics, such as dependency on bunch charge, angular distribution, spectral width and intensity fluctuations all corroborate the existing models for SASE FELs.Comment: 6 pages including 6 figures; e-mail: [email protected]

    From ‘Hellstrom Paradox–to anti-adenosinergic cancer immunotherapy

    Get PDF
    Cancer therapy by endogenous or adoptively transferred anti-tumor T cells is considered complementary to conventional cancer treatment by surgery, radiotherapy or chemotherapy. However, the scope of promising immunotherapeutic protocols is currently limited because tumors can create a ‘hostile–immunosuppressive microenvironment that prevents their destruction by anti-tumor T cells. There is a possibility to develop better and more effective immunotherapies by inactivating mechanisms that inhibit anti-tumor T cells in the tumor microenvironment and thereby protect cancerous tissues from immune damage. This may be now possible because of the recent demonstration that genetic deletion of immunosuppressive A2A and A2B adenosine receptors (A2AR and A2BR) or their pharmacological inactivation can prevent the inhibition of anti-tumor T cells by the hypoxic tumor microenvironment and as a result facilitate full tumor rejection [Ohta A, Gorelik E, Prasad SJ et al (2006) Proc Natl Acad Sci USA 103(35):13132–3137]. This approach is based on in vivo genetic evidence that A2AR play a critical role in the protection of normal tissues from overactive immune cells in acutely inflamed and hypoxic areas. The observations of much improved T-cell-mediated rejection of tumors in mice with inactivated A2AR strongly suggest that A2AR also protects hypoxic cancerous tissues and that A2AR should be inactivated in order to improve tumor rejection by anti-tumor T cells

    Adenosine and lymphocyte regulation

    Get PDF
    Adenosine is a potent extracellular messenger that is produced in high concentrations under metabolically unfavourable conditions. Tissue hypoxia, consequent to a compromised cellular energy status, is followed by the enhanced breakdown of ATP leading to the release of adenosine. Through the interaction with A2 and A3 membrane receptors, adenosine is devoted to the restoration of tissue homeostasis, acting as a retaliatory metabolite. Several aspects of the immune response have to be taken into consideration and even though in general it is very important to dampen inflammation, in some circumstances, such as the case of cancer, it is also necessary to increase the activity of immune cells against pathogens. Therefore, adenosine receptors that are defined as ‘sensors–of metabolic changes in the local tissue environment may be very important targets for modulation of immune responses and drugs devoted to regulating the adenosinergic system are promising in different clinical situations

    Gu-4 Suppresses Affinity and Avidity Modulation of CD11b and Improves the Outcome of Mice with Endotoxemia and Sepsis

    Get PDF
    BACKGROUND: Systemic leukocyte activation and disseminated leukocyte adhesion will impair the microcirculation and cause severe decrements in tissue perfusion and organ function in the process of severe sepsis. Gu-4, a lactosyl derivative, could selectively target CD11b to exert therapeutic effect in a rat model of severe burn shock. Here, we addressed whether Gu-4 could render protective effects on septic animals. METHODOLOGY/PRINCIPAL FINDINGS: On a murine model of endotoxemia induced by lipopolysaccharide (LPS), we found that the median effective dose (ED50) of Gu-4 was 0.929 mg/kg. In vivo treatment of Gu-4 after LPS challenge prominently attenuated LPS-induced lung injury and decreased lactic acid level in lung tissue. Using the ED50 of Gu-4, we also demonstrated that Gu-4 treatment significantly improved the survival rate of animals underwent sepsis induced by cecal ligation and puncture. By adhesion and transwell migration assays, we found that Gu-4 treatment inhibited the adhesion and transendothelial migration of LPS-stimulated THP-1 cells. By flow cytometry and microscopy, we demonstrated that Gu-4 treatment inhibited the exposure of active I-domain and the cluster formation of CD11b on the LPS-stimulated polymorphonuclear leukocytes. Western blot analyses further revealed that Gu-4 treatment markedly inhibited the activation of spleen tyrosine kinase in LPS-stimulated THP-1 cells. CONCLUSIONS/SIGNIFICANCE: Gu-4 improves the survival of mice underwent endotoxemia and sepsis, our in vitro investigations indicate that the possible underlying mechanism might involve the modulations of the affinity and avidity of CD11b on the leukocyte. Our findings shed light on the potential use of Gu-4, an interacting compound to CD11b, in the treatment of sepsis and septic shock

    Conceptual design report for the LUXE experiment

    Get PDF
    This Conceptual Design Report describes LUXE (Laser Und XFEL Experiment), an experimental campaign that aims to combine the high-quality and high-energy electron beam of the European XFEL with a powerful laser to explore the uncharted terrain of quantum electrodynamics characterised by both high energy and high intensity. We will reach this hitherto inaccessible regime of quantum physics by analysing high-energy electron-photon and photon-photon interactions in the extreme environment provided by an intense laser focus. The physics background and its relevance are presented in the science case which in turn leads to, and justifies, the ensuing plan for all aspects of the experiment: Our choice of experimental parameters allows (i) field strengths to be probed where the coupling to charges becomes non-perturbative and (ii) a precision to be achieved that permits a detailed comparison of the measured data with calculations. In addition, the high photon flux predicted will enable a sensitive search for new physics beyond the Standard Model. The initial phase of the experiment will employ an existing 40 TW laser, whereas the second phase will utilise an upgraded laser power of 350 TW. All expectations regarding the performance of the experimental set-up as well as the expected physics results are based on detailed numerical simulations throughout

    Conceptual design report for the LUXE experiment

    Get PDF
    AbstractThis Conceptual Design Report describes LUXE (Laser Und XFEL Experiment), an experimental campaign that aims to combine the high-quality and high-energy electron beam of the European XFEL with a powerful laser to explore the uncharted terrain of quantum electrodynamics characterised by both high energy and high intensity. We will reach this hitherto inaccessible regime of quantum physics by analysing high-energy electron-photon and photon-photon interactions in the extreme environment provided by an intense laser focus. The physics background and its relevance are presented in the science case which in turn leads to, and justifies, the ensuing plan for all aspects of the experiment: Our choice of experimental parameters allows (i) field strengths to be probed where the coupling to charges becomes non-perturbative and (ii) a precision to be achieved that permits a detailed comparison of the measured data with calculations. In addition, the high photon flux predicted will enable a sensitive search for new physics beyond the Standard Model. The initial phase of the experiment will employ an existing 40 TW laser, whereas the second phase will utilise an upgraded laser power of 350 TW. All expectations regarding the performance of the experimental set-up as well as the expected physics results are based on detailed numerical simulations throughout.</jats:p
    corecore