83 research outputs found

    Multilobar electrocorticography monitoring during intracranial aneurysm surgery

    Get PDF
    Introduction: To detect a neuronal threshold of tolerance to ischemia, the usefulness of multilobar electrocorticography (mEcoG) during intracranial aneurysm surgery was compared to the scalp EEG and correlated with the postoperative neurological status and the radiological findings. Methods: Twenty-one patients harboring intracranial aneurysms were monitored by simultaneous scalp EEG and lobe-dependent mEcoG during surgical clipping. The patients were divided into group A (6 patients with no temporary clipping) and group B (15 patients with temporary clipping). Results: New focal modifications of the mEcoG signal with high frequency (HF)-β3 and delta waves were observed in none of the patients in group A and all of the patients in group B. These anomalies were followed by focal burst suppression pattern in eight cases (53%) in group B. These changes were detected in only two cases (9%) on the scalp EEG. New corticographic changes resolved in eight patients (53%) in group B. Among the seven patients in group B who had persistent focal burst pattern after clip removal, six (85%) presented with new neurological deficit or new hypodensity on CT. The Glasgow Outcome Scale was good (IV or V) in 85% of cases. Conclusion: mEcoG is more sensitive than scalp EEG. The appearance and persistence of the focal burst suppression pattern shown on mEcoG, was associated with a new neurological deficit or new hypodensity, whereas HF-β3 or delta waves per se were not associated with new changes. A better comprehension of these EEG anomalies could determine the duration of temporary clipping and consequently influence the surgical strateg

    Multilobar electrocorticography monitoring during intracranial aneurysm surgery

    Get PDF
    INTRODUCTION: To detect a neuronal threshold of tolerance to ischemia, the usefulness of multilobar electrocorticography (mEcoG) during intracranial aneurysm surgery was compared to the scalp EEG and correlated with the postoperative neurological status and the radiological findings. METHODS: Twenty-one patients harboring intracranial aneurysms were monitored by simultaneous scalp EEG and lobe-dependent mEcoG during surgical clipping. The patients were divided into group A (6 patients with no temporary clipping) and group B (15 patients with temporary clipping). RESULTS: New focal modifications of the mEcoG signal with high frequency (HF)-beta3 and delta waves were observed in none of the patients in group A and all of the patients in group B. These anomalies were followed by focal burst suppression pattern in eight cases (53%) in group B. These changes were detected in only two cases (9%) on the scalp EEG. New corticographic changes resolved in eight patients (53%) in group B. Among the seven patients in group B who had persistent focal burst pattern after clip removal, six (85%) presented with new neurological deficit or new hypodensity on CT. The Glasgow Outcome Scale was good (IV or V) in 85% of cases. CONCLUSION: mEcoG is more sensitive than scalp EEG. The appearance and persistence of the focal burst suppression pattern shown on mEcoG, was associated with a new neurological deficit or new hypodensity, whereas HF-beta3 or delta waves per se were not associated with new changes. A better comprehension of these EEG anomalies could determine the duration of temporary clipping and consequently influence the surgical strategy

    Centrosome clustering and Cyclin D1 gene amplification in double minutes are common events in chromosomal unstable bladder tumors

    Get PDF
    Background: Aneuploidy, centrosome abnormalities and gene amplification are hallmarks of chromosome instability (CIN) in cancer. Yet there are no studies of the in vivo behavior of these phenomena within the same bladder tumor. Methods: Twenty-one paraffin-embedded bladder tumors were analyzed by conventional comparative genome hybridization and fluorescence in situ hybridization (FISH) with a cyclin D1 gene (CCND1)/centromere 11 dual-color probe. Immunofluorescent staining of α, β and γ tubulin was also performed. Results: Based on the CIN index, defined as the percentage of cells not displaying the modal number for chromosome 11, tumors were classified as CIN-negative and CIN-positive. Fourteen out of 21 tumors were considered CIN-positive. All T1G3 tumors were included in the CIN-positive group whereas the majority of Ta samples were classified as CIN-negative tumors. Centrosome clustering was observed in six out of 12 CIN-positive tumors analyzed. CCND1 amplification in homogeneously staining regions was present in six out of 14 CIN-positive tumors; three of them also showed amplification of this gene in double minutes. Conclusions: Complex in vivo behavior of CCND1 amplicon in bladder tumor cells has been demonstrated by accurate FISH analysis on paraffin-embedded tumors. Positive correlation between high heterogeneity, centrosome abnormalities and CCND1 amplification was found in T1G3 bladder carcinomas. This is the first study to provide insights into the coexistence of CCND1 amplification in homogeneously staining regions and double minutes in primary bladder tumors. It is noteworthy that those patients whose tumors showed double minutes had a significantly shorter overall survival rate (p < 0.001)

    Global Mapping of DNA Conformational Flexibility on Saccharomyces cerevisiae

    Get PDF
    In this study we provide the first comprehensive map of DNA conformational flexibility in Saccharomyces cerevisiae complete genome. Flexibility plays a key role in DNA supercoiling and DNA/protein binding, regulating DNA transcription, replication or repair. Specific interest in flexibility analysis concerns its relationship with human genome instability. Enrichment in flexible sequences has been detected in unstable regions of human genome defined fragile sites, where genes map and carry frequent deletions and rearrangements in cancer. Flexible sequences have been suggested to be the determinants of fragile gene proneness to breakage; however, their actual role and properties remain elusive. Our in silico analysis carried out genome-wide via the StabFlex algorithm, shows the conserved presence of highly flexible regions in budding yeast genome as well as in genomes of other Saccharomyces sensu stricto species. Flexibile peaks in S. cerevisiae identify 175 ORFs mapping on their 3’UTR, a region affecting mRNA translation, localization and stability. (TA)n repeats of different extension shape the central structure of peaks and co-localize with polyadenylation efficiency element (EE) signals. ORFs with flexible peaks share common features. Transcripts are characterized by decreased half-life: this is considered peculiar of genes involved in regulatory systems with high turnover; consistently, their function affects biological processes such as cell cycle regulation or stress response. Our findings support the functional importance of flexibility peaks, suggesting that the flexible sequence may be derived by an expansion of canonical TAYRTA polyadenylation efficiency element. The flexible (TA)n repeat amplification could be the outcome of an evolutionary neofunctionalization leading to a differential 3’-end processing and expression regulation in genes with peculiar function. Our study provides a new support to the functional role of flexibility in genomes and a strategy for its characterization inside human fragile sites

    L'hémisphérotomie péri-insulaire: technique chirurgicale, monitoring EEG intraopératoire et résultats sur le contrôle de l'épilepsie [Periinsular hemispherotomy: surgical technique, intraoperative EEG monitoring and results on seizure outcome]

    No full text
    Peri-insular hemispherotomy is a surgical technique used in the treatment of drug-resistant epilepsy of hemispheric origin. It is based on the exposure of insula and semi-circular sulci, providing access to the lateral ventricle through a supra- and infra-insular window. From inside the ventricle, a parasagittal callosotomy is performed. The basal and medial portion of the frontal lobe is isolated. Projections to the anterior commissure are interrupted at the time of amygdala resection. The hippocampal tail and fimbria-fornix are disrupted posteriorly. We report our experience of 18 cases treated with this approach. More than half of them presented with congenital epilepsy. Neuronavigation was useful in precisely determining the center and extent of the craniotomy, as well as the direction of tractotomies and callosotomy, allowing minimal exposure and blood loss. Intra-operative monitoring by scalp EEG on the contralateral hemisphere was used to follow the progression of the number of interictal spikes during the disconnection procedure. Approximately 90% of patients were in Engel's Class I. We observed one case who presented with transient postoperative neurological deterioration probably due to CSF overdrainage and documented one case of incomplete disconnection in a patient presenting with hemimegalencephaly who needed a second operation. We observed a good correlation between a significant decrease in the number of spikes at the end of the procedure and seizure outcome. Peri-insular hemispherotomy provides a functional disconnection of the hemisphere with minimal resection of cerebral tissue. It is an efficient technique with a low complication rate. Intra-operative EEG monitoring might be used as a predictive factor of completeness of the disconnection and consequently, seizure outcome

    Neurophysiological changes during shortening osteotomies of the spine.

    No full text
    BACKGROUND CONTEXT: Kyphotic deformities with sagittal imbalance of the spine can be treated with spinal osteotomies. Those procedures are known to have a high incidence of neurological complications, in particular at the thoracic level. Motor evoked potentials (MEPs) have been widely used in helping to avoid major neurological deficits postoperatively. Previous reports have shown that a significant proportion of such cases present with important transcranial MEP (Tc-MEP) changes during surgery with some of them being predictive of postoperative deficits. PURPOSE: Our aim was to study Tc-MEP changes in a consecutive series of patients and correlate them with clinical parameters and radiological changes. STUDY DESIGN/SETTING: Retrospective case notes study from a prospective patient register. PATIENT SAMPLE: Eighteen patients undergoing posterior shortening osteotomies (nine at thoracic and nine at lumbar levels) for kyphosis of congenital, degenerative, inflammatory, or post-traumatic origin were included. OUTCOME MEASURES: Loss of at least 80% of Tc-MEP signal expressed as the area under the curve percentual change, of at least one muscle. METHODS: We studied the relation between outcome measure (80% Tc-MEP loss in at least one muscle group) and amount of posterior vertebral body shortening as well as angular correction measured on computed tomography scans, occurrence of postoperative deficits, intraoperative blood pressure at the time of the osteotomy, and hemoglobin (Hb) change. RESULTS: All patients showed significant Tc-MEP changes. In particular, greater than 80% MEP loss in at least one muscle group was observed in five of nine patients in the thoracic group and four of nine patients in the lumbar group. No surgical maneuver was undertaken as a result of this loss in an effort to improve motor responses other than verifying the stability of the construct and the extent of the decompression. Four patients developed postoperative deficits of radicular origin, three of them recovering fully at 3 months. No relation was found between intraoperative blood pressure, Hb changes, and Tc-MEP changes. Severity of Tc-MEP loss did not correlate with postoperative deficits. Shortening of more than 10 mm was linked to more severe Tc-MEP changes in the thoracic group. CONCLUSIONS: Transcranial MEP changes during spinal shortening procedures are common and do not appear to predict severe postoperative deficits. Total loss of Tc-MEP (not witnessed in our series) might require a more drastic approach with possible reversal of the correction and wake-up test
    corecore