64 research outputs found
tDCS over the left prefrontal cortex enhances cognitive control for positive affective stimuli
Transcranial Direct Current Stimulation (tDCS) is a neuromodulation technique with promising results for enhancing cognitive information processes. So far, however, research has mainly focused on the effects of tDCS on cognitive control operations for non-emotional material. Therefore, our aim was to investigate the effects on cognitive control considering negative versus positive material. For this sham-controlled, within-subjects study, we selected a homogeneous sample of twenty-five healthy participants. By using behavioral measures and event related potentials (ERP) as indexes, we aimed to investigate whether a single session of anodal tDCS of the left dorsolateral prefrontal cortex (DLPFC) would have specific effects in enhancing cognitive control for positive and negative valenced stimuli. After tDCS over the left DLPFC (and not sham control stimulation), we observed more negative N450 amplitudes along with faster reaction times when inhibiting a habitual response to happy compared to sad facial expressions. Gender did not influence the effects of tDCS on cognitive control for emotional information. In line with the Valence Theory of side-lateralized activity, this stimulation protocol might have led to a left dominant (relative to right) prefrontal cortical activity, resulting in augmented cognitive control specifically for positive relative to negative stimuli. To verify that tDCS induces effects that are in line with all aspects of the well known Valence Theory, future research should investigate the effects of tDCS over the left vs. right DLPFC on cognitive control for emotional information
The regulation of positive and negative social feedback: a psychophysiological study
Everyday social evaluations are psychologically potent and trigger self-reflective thoughts and feelings. The present study sought to examine the psychophysiological impact of such evaluations using eye tracking, pupillometry, and heart-rate variability. Fifty-nine healthy adult volunteers received rigged social feedback (criticism and praise) based on their photograph. Gaze data were collected to investigate processes of attentional deployment/allocation toward the self or the evaluator expressing criticism or praise. Whereas voluntary attention was directed to evaluators who expressed praise, attention was drawn to one's own picture after criticism. Pupil dilation and heart-rate variability were larger in response to criticism as compared to praise, suggesting a flexible and adaptive emotion regulatory effort in response to social information that triggers an affective response. Altogether, healthy individuals recruited more regulatory resources to cope with negative (as compared to positive) social feedback, and this processing of social feedback was associated with adjustments in self-focused attention
The dimensionality of stability depends on disturbance type
International audienceEcosystems respond in various ways to disturbances. Quantifying ecological stability therefore requires inspecting multiple stability properties, such as resistance, recovery, persistence and invariability. Correlations among these properties can reduce the dimensionality of stability, simplifying the study of environmental effects on ecosystems. A key question is how the kind of disturbance affects these correlations. We here investigated the effect of three disturbance types (random, species-specific, local) applied at four intensity levels, on the dimensionality of stability at the population and community level. We used previously parameterized models that represent five natural communities, varying in species richness and the number of trophic levels. We found that disturbance type but not intensity affected the dimensionality of stability and only at the population level. The dimensionality of stability also varied greatly among species and communities. Therefore, studying stability cannot be simplified to using a single metric and multi-dimensionalassessments are still to be recommended
Field-tuned quantum tunneling in a supramolecule dimer
Field-tuned quantum tunneling in two single-molecule magnets coupled
antiferromagnetically and formed a supramolecule dimer is studied. We obtain
step-like magnetization curves by means of the numerically exact solution of
the time-dependent Schr\H{o}dinger equation. The steps in magnetization curves
show the phenomenon of quantum resonant tunneling quantitatively. The effects
of the sweeping rate of applied field is discussed. These results obtained from
quantum dynamical evolution well agree with the recent experiment[W.Wernsdorfer
et al. Nature 416(2002)406].Comment: 11 pages, 4 figures, 2 tables. Submited to Phys. Rev.
Ultra-low temperature structure determination of a Mn12 single-molecule magnet and the interplay between lattice solvent and structural disorder
We have determined the ultra-low temperature crystal structure of the archetypal single-molecule magnet (SMM) [Mn12O12(O2CMe)16(H2O)4]·4H2O·2MeCO2H (1) at 2 K, by using a combination of single-crystal X-ray and single-crystal neutron diffraction. This is the first structural study of any SMM in the same temperature regime where slow magnetic relaxation occurs. We reveal an additional hydrogen bonding interaction between the {Mn12} cluster and its solvent of crystallisation, which shows how the lattice solvent transmits disorder to the acetate ligands in the {Mn12} complex. Unusual quantum properties observed in 1 have long been attributed to disorder. Hence, we studied the desolvation products of 1, in order to understand precisely the influence of lattice solvent on the structure of the cluster. We present two new axially symmetric structures corresponding to different levels of desolvation of 1, [Mn12O12(O2CMe)16(H2O)4]·4H2O (2) and [Mn12O12(O2CMe)16(H2O)4] (3). In 2, removal of acetic acid of crystallisation largely resolves positional disorder in the affected acetate ligands, whereas removal of lattice water molecules further resolves the acetate ligand disorder in 3. Due to the absence of acetic acid of crystallisation, both 2 and 3 have true, unbroken S4 symmetry, showing for the first time that it is possible to prepare fully axial Mn12–acetate analogues from 1, via single-crystal to single-crystal transformations
Dispersal syndromes in challenging environments: A cross‐species experiment
Dispersal is a central biological process tightly integrated into life-histories, morphology, physiology and behaviour. Such associations, or syndromes, are anticipated to impact the eco-evolutionary dynamics of spatially structured populations, and cascade into ecosystem processes. As for dispersal on its own, these syndromes are likely neither fixed nor random, but conditional on the experienced environment. We experimentally studied how dispersal propensity varies with individuals' phenotype and local environmental harshness using 15 species ranging from protists to vertebrates. We reveal a general phenotypic dispersal syndrome across studied species, with dispersers being larger, more active and having a marked locomotion-oriented morphology and a strengthening of the link between dispersal and some phenotypic traits with environmental harshness. Our proof-of-concept metacommunity model further reveals cascading effects of context-dependent syndromes on the local and regional organisation of functional diversity. Our study opens new avenues to advance our understanding of the functioning of spatially structured populations, communities and ecosystems.
Keywords: context-dependent dispersal; dispersal strategy; distributed experiment; predation risk; resource limitatio
- …